Proceedings
of the PolEval 2018 Workshop

Maciej Ogrodniczuk, tukasz Kobylinski (eds.)

—

[PAN

i

Institute of Computer Science, Polish Academy of Sciences
Warszawa, 2018

Contents

PolEval 2018: Instead of a Preface
Maciej Ogrodniczuk, Lukasz Kobylinski 5

Results of the PolEval 2018 Shared Task 1: Dependency Parsing
Alina Wrdéblewska 11

IMS at the PolEval 2018: A Bulky Ensemble Dependency Parser
Meets 12 Simple Rules for Predicting Enhanced Dependencies in Polish
Agnieszka Falenska, Anders Bjorkelund, Xiang Yu, Jonas Kuhn 25

Drewutnia: a Frugal Approach to Dependency Parsing
Beata Skuczynska e 41

Semi-Supervised Neural System for Tagging, Parsing and Lemmatization.
Addendum (abstract)
Piotr Rybak and Alina Wréblewska 49

Results of the PolEval 2018 Shared Task 2: Named Entity Recognition
Aleksander Wawer, Estera Malek 53

Approaching Nested Named Entity Recognition with Parallel LSTM-CRFs
Lukasz Borchmann, Andrzej Gretkowski, Filip Gralinski 63

Named Entity Recognition for Polish Using Contextual String Embeddings
(abstract)
Adam Kaczmarek, Pawet Rychlikowski, Michat Zapotoczny 75

Recognition of Named Entities for Polish — Comparison of Deep Learning
and Conditional Random Fields Approaches
Michal Marcinczuk, Jan Kocon, MichatGawor 77

A Bidirectional LSTM-CRF Network with Subword Representations,

Character Convolutions and Morphosyntactic Features for Named Entity
Recognition in Polish

Mateusz Piotrowski, Wojciech Janowski, Piotr Pezik 93

4

KNER: Named Entity Recognition for Polish
Krzysztof Wrébel, Aleksander Smywinski-Pohl 101

Flat Approach to Finding Nested Named Entities
Paulinda ZaKt 109

Results of the PolEval 2018 Shared Task 3: Language Models
Grzegorz WojdyZa o it e e e e 121

Universal Language Model Fine-Tuning with Subword Tokenization
for Polish
Piotr Czapla, Jeremy Howard, Marcin Kardas 129

Survey on Statistical and Semantic Language Modelling Based on PolEval
Krzysztof Wotk e 141

PolEval 2018: Instead of a Preface

Maciej Ogrodniczuk, Lukasz Kobylinski (Institute of Computer Science,
Polish Academy of Sciences)

There has been a lot of research activity in Natural Language Processing in Poland
in recent years but the community was lacking something competitive and concrete:
this is how the idea of PolEval was conceived. It was designed to become a forum
for evaluating NLP tools for processing Polish with established evaluation measures,
procedures and data sets.

It all started only in 2017, and, as with any such new initiative among the multitude
of other options, could be limited to a one-year event or could grow — and we are
happy to experience the latter. In 2018 we were very pleased to receive a total of
24 submissions from 14 teams. Some of them are companies which seems to be
the current trend, often neglected by the scholars but more and more evident. The
big and smaller research labs successfully employ the top researchers, offering them
motivating working environments, access to big data and top-notch infrastructure. It
can only make us happier that they decide to take part.

The current procedings are the result of a special session organized during the Al
& NLP Day 2018 (https://nlpday.pl), which took place on October 19th, 2018
at the Institute of Computer Science, Polish Academy of Sciences in Warsaw. The
event gathered many PolEval 2018 participants and featured 12 presentations of their
submissions. Apart from individual descriptions, 9 in the form of research papers
and 2 as short abstracts, the volume presents an overview of the submitted systems
in each task summarizing the machine learning methods used, system architectures,
features and training data.

Thanks to our sponsors, we were happy to award 4 prizes in each category based on
the condition of releasing the source code of the winning systems. We view this as
one of additional achievements of our initivative.

We hope you will join us next year for PolEval 2019! Please feel free to share your
ideas for improving this competition or willingness to help in organizing your own
NLP tasks.

https://nlpday.pl

Organizing Committee

Maciej Ogrodniczuk

Institute of Computer Science, Polish Academy of Sciences

Lukasz Kobylinski

Institute of Computer Science, Polish Academy of Sciences
Sages

Aleksander Wawer

Institute of Computer Science, Polish Academy of Sciences
Samsung R&D Center Poland

Grzegorz Wojdyga

Institute of Computer Science, Polish Academy of Sciences

Alina Wroéblewska

Institute of Computer Science, Polish Academy of Sciences

Acknowledgements

PolEval 2018 Sponsor

We would like to thank Samsung Electronics Poland for supporting PolEval 2018
which allowed us to provide prizes for the competition winners.

SAMSUNG

Al & NLP Day Workshop Sponsors

We would like to thank the following organizations for supporting the 2018 edition
of Al & NLP Day Workshop.

int ive @ ~rrucan

AI & NLP Day Workshop Organizers

1] sages

Results of the PolEval 2018 Competition:
Dependency Parsing Shared Task

Alina Wréblewska (Institute of Computer Science, Polish Academy
of Sciences)

Abstract

This paper summarises the first PolEval 2018 shared task on dependency parsing of
Polish. The focus of this task is to develop NLP systems that can analyse Polish sen-
tences and predict their morphosyntactic representations possibly with some semantic
extensions. Except for gold-standard tokenisation and sentence segmentation, no
other gold-standard annotation is included in test data. The participating systems have
to predict labelled dependency trees of the tokenised sentences as well as universal
part-of-speech tags, universal morphological features, Polish-specific tags, and lem-
mata of the individual tokens (subtask 1A). The participants are also encouraged to
predict semantic roles of some dependents and labelled enhanced graphs (subtask 1B).
Dependency parsing systems are trained and tested on data from Polish Dependency
Bank in the UD-like format. Four systems partake in the dependency subtask 1A and
three of them in the subtask 1B. The winner of the subtask 1A — COMBO — predicts
the labelled dependency trees with LAS F;-score of 86.11, the Polish-specific tags
with F;-score of 93.44, and the lemmata with F;-score of 97.27. In the subtask 1B,
the most accurate enhanced graphs are predicted by the IMS system (ELAS F;-score
of 81.9) and the semantic roles are most precisely predicted with the COMBO system
(SLAS F;-score of 77.3).

Keywords

Polish, natural language processing, dependency parsing, enhanced graphs, semantic
roles, evaluation

12 Alina Wréblewska

1. Introduction

The PolEval series is an annual Polish language processing competition organised
by Institute of Computer Science PAS! in cooperation with other institutions and
companies. The first PolEval 2017 competition featured two shared tasks on part-of-
speech tagging (Kobylinski and Ogrodniczuk 2017) and sentiment analysis (Wawer
and Ogrodniczuk 2017). The second edition of the competition — PolEval 2018
(Ogrodniczuk and Kobyliniski 2018) — offers three tasks on dependency parsing,
named entity recognition, and language models.

This paper summarises the first PolEval 2018 shared task on dependency parsing of
Polish.? The focus of this task is to develop NLP systems that can analyse Polish sen-
tences and predict their morphosyntactic representations possibly with some semantic
extensions. Except for gold-standard tokenisation and sentence segmentation, no
other gold-standard annotation is included in test data. The participating systems
have to predict labelled dependency trees of the tokenised sentences, i.e. they have to
predict a syntactic governor for each token and a proper label of the relation between
the token and its predicted governor. Furthermore, the systems are required to predict
universal part-of-speech tags, universal morphological features, Polish-specific tags,
and lemmata of the individual tokens (subtask 1A). The participants are also encour-
aged to predict semantic roles of some dependents and labelled enhanced graphs,
i.e. labelled dependency trees with the morphosyntactically annotated tokens and
with the enhanced edges encoding the shared dependents and the shared governors
of the coordinated conjuncts (subtask 1B). The participants can take part in one of
two subtasks or in both subtasks (see Section 2 for a detailed description of both
subtasks).

Dependency parsing systems are trained and tested on data from Polish Dependency
Bank (Wrdblewska 2014) provided by the organisers of the shared task (see Section 3).
As the Universal Dependencies (UD) annotation schema (Nivre et al. 2016) has
become the standard of annotating dependency trees in recent years, the provided
data sets are in the UD-like format (Wréblewska 2018). Four systems partake in
the dependency subtask 1A and three of them in the subtask 1B. The participating
systems are briefly characterised in Section 4. The evaluation issues, i.e. the evaluation
metrics and the evaluation script, are presented in Section 5. Finally, the results and
some conclusions are in Sections 6 and 7, respectively.

"https://ipipan.waw.pl/en/
2http://poleval.pl/tasks#taskl

https://ipipan.waw.pl/en/
http://poleval.pl/tasks#task1

Results of the PolEval 2018 Shared Task 1: Dependency Parsing 13

2. Task Description

2.1. Task 1A: Morphosyntactic Prediction of Dependency Trees

The participating systems have to predict labelled dependency trees of the tokenised
sentences and morphosyntactic analyses of the individual tokens. Except for the ROOT
node, each node of a dependency tree corresponds to one sentence token. Each
of these nodes depends on exactly one governing node (HEAD) and the relation
between this node and its governor is labelled with a dependency type (DEPREL)
from the repertoire of the universal dependency labels.> The UD dependency types
can be extended with the Polish-specific subtypes, e.g. advmod:arg (an adverbial
subcategorised by a verb) for labelling the function of lepiej (‘better’) governed by mieé
(‘to have’) in Wiem, e mozemy mie¢ lepiej (‘I know that our situation/conditions will
improve’, lit. ‘T know that we can have better’). The morphosyntactic analysis, in turn,
consists in predicting universal part-of-speech tags (UP0S), Polish-specific tags (xP0s),
universal morphological features (FEATS), and lemmata (LEMMA) of the individual
tokens. If participants do not aim at predicting the morphosyntactic analyses of
the Polish tokens, their systems are allowed to only predict labelled dependency trees
(the morphosyntactic analyses are predicted with the baseline parser in this case).
The dependency trees are encoded in the CONLL-U format.*

2.2. Task 1B: Beyond Dependency Tree

The participants are encouraged to predict semantically motivated labelled depen-
dency graphs, i.e. the labelled dependency trees with the enhanced edges and with
the semantic roles, which some dependents can be additionally annotated with.
The enhanced edges encode the shared dependents of the coordinated elements
(e.g. Piotr wstat i wyszedt. ‘Piotr stood up and left.”) and the shared governors of
the coordinated elements (e.g. Lubimy babeczki i ciasteczka. ‘We like cupcakes and
cookies.”’). The additional semantic roles (e.g. Experiencer, Place, Condition)
extend the semantic meaning of indirect objects (iobj), oblique nominals (obl),
adverbial clause modifiers (advcl), some adverbial modifiers (advmod), some noun
modifiers (nmod), etc. The semantically motivated enhanced graphs are encoded
in the CoNLL-U-like format with the enhanced edges in the 9th column (DEPS) and
the semantic roles in the additional 11th column (SEM).

*http://universaldependencies.org/u/dep/index.html
*http://universaldependencies.org/format.html

http://universaldependencies.org/u/dep/index.html
http://universaldependencies.org/format.html

14 Alina Wréblewska

3. Data

The participating systems can be trained on the PDBUD trees (Wréblewska 2018), i.e.
the trees from Polish Dependency Bank (Wréblewska 2014) converted to the Universal
Dependencies format (Nivre et al. 2016). The updated version of PDBUD is publicly
available.”

3.1. Data Split

PDBUD is divided into three parts — training (17,770 trees), test (2219 trees) and
development (2219 trees) data sets (see Table 1 for more details). The procedure of
assigning dependency trees to particular data sets is generally random while maintain-
ing the proportion of sentences from individual sources, i.e. NKJP (Przepiorkowski
et al. 2012), CDSCorpus (Wréblewska and Krasnowska-Kieras 2017), projection-based
corpus (Wrdblewska and Przepidérkowski 2014) and literature. There is one constraint
on the dividing procedure — the trees from Skfadnica zaleznosciowa® (Wréblewska
2012) are not included in the test set. The Skladnica trees have been publicly avail-
able for some time and we decided to exclude them in the validation process. Since
sentences underlying the Sktadnica trees are generally shorter than the remaining
sentences, the average number of tokens per sentence is significantly higher in the test
set than in two other sets.

Table 1: Statistics of the training (train), test, and development (dev) data sets of PDBUD

PDBUD

train test dev
number of sentences 17770 2219 2219
average number of tokens per sentence 15.4 20.2 15.1
number of non-projective trees 1310 302 172
percent of non-projective trees 7.4 13.6 7.7
number of enhanced graphs 7147 1181 855
percent of enhanced graphs 40.2 53.2 38.5

Shttp://git.nlp.ipipan.waw.pl/alina/PDBUD
®Sktadnica zaleznosciowa is the first Polish dependency treebank.

http://git.nlp.ipipan.waw.pl/alina/PDBUD

Results of the PolEval 2018 Shared Task 1: Dependency Parsing 15

3.2. Test Data Set

Sentence segmentation and tokenisation are not evaluated in the current shared task.
We therefore provide the gold-standard tokenised test sentences. The morphosyntactic
properties of the test tokens — UPOS, XPOS, FEATS, and LEMMA — are automatically
predicted with UDPipe (Straka and Strakova 2017) trained on PDBUD training data.
UDPipe’s predictions should be replaced with the participants’ predictions.

3.3. Additional Resources

The following additional resources are allowed to use while training dependency
parsing systems for Polish:

— all data collected for the purpose of the CoNLL 2018 UD shared task (Zeman
et al. 2018),”

— Polish word embeddings.®

4. Participating Systems

The overview of four systems participating in the first PolEval 2018 shared task is
presented in Table 2. All systems are briefly described in the following subsections.

Table 2: The overview of the systems participating in the first task of the PolEval 2018
competition. Explanations: UPOS: universal part-of-speech tag; xP0S — Polish-specific tag;
FEATS - list of universal morphological features; LEMMA — lemma; HEAD — head of the current
word; DEPREL — universal dependency relation; DEPS — enhanced dependency graph; SEM —
semantic role.

. Predictions
System Architecture
HEAD DEPREL UPOS XPOS FEATS LEMMA DEPS SEM
COMBO neural yes yes yes yes
IMS CRF/neural/rules yes yes yes no
Poleval2k18 neural yes yes no yes
Drewutnia neural yes no no no

"http://universaldependencies.org/conll18/data.html
Shttp://dsmodels.nlp.ipipan.waw.pl, http://mozart.ipipan.waw.pl/~axw/models

http://universaldependencies.org/conll18/data.html
http://dsmodels.nlp.ipipan.waw.pl
http://mozart.ipipan.waw.pl/~axw/models

16 Alina Wréblewska

4.1. COMBO

COMBO? (Rybak and Wréblewska 2018) is a neural system that partakes in both
subtasks of the Task 1. The COMBO system used in the subtask 1A is a version of
the ICS PAS system (Rybak and Wréblewska 2018) participating in the CoNLL 2018 UD
shared task (Zeman et al. 2018). COMBO consists of jointly trained tagger, lemmatizer,
and dependency parser. They are based on the features extracted by a bidirectional
long-short term memory network (biLSTM), which takes the concatenation of external
word embeddings and internal character-based word embeddings as input. COMBO
uses both fully connected and dilated convolutional neural network architectures.

In the subtask 1B, COMBO predicts enhanced edges and semantic roles (Rybak
and Wréblewska 2018b). The enhanced graphs are predicted in the similar way as
the dependency trees in the subtask 1A. Instead of the soft-max function, the sigmoid
activation function is applied to each row of the adjacency matrix to predict an en-
hanced graph, i.e. to predict all heads for each token of a sentence. Dependency
labels of these arcs are predicted with a fully connected neural network with one
hidden layer. The soft-max activation function is used to force the network to predict
only one label for each arc. Both parts are jointly optimised using cross-entropy.
COMBO predicts the semantic roles using a fully connected neural network with one
hidden layer that takes the features extracted by biLSTM as input. The procedure of
predicting semantic roles is similar to the prediction of part-of-speech tags.

COMBO is trained on data provided for the purpose of the PolEval 2018 dependency
shared task. It also uses pre-trained word embeddings.'?

4.2. IMS

The IMS team submitted two systems for both subtasks of the Task 1 (Falenska
et al. 2018). The system for the subtask 1A is based on the IMS ensemble system
(Bjorkelund et al. 2017), which successfully participated in the CoNLL 2017 UD shared
task (Zeman et al. 2017). The IMS system integrates:

— a CRF tagger predicting morphological features, part-of-speech tags, and lem-
mata,

— a neural tagger predicting supertags which are incorporated into the feature
model of a dependency parser (Ouchi et al. 2014),

— an ensemble of multiple graph-based and transition-based parsers applying
the blending technique (Sagae and Lavie 2006) for combining parsers’ outputs.

*https://github.com/360er0/COMBO
Ohttp://mozart.ipipan.waw.pl/~axw/models

https://github.com/360er0/COMBO
http://mozart.ipipan.waw.pl/~axw/models

Results of the PolEval 2018 Shared Task 1: Dependency Parsing 17

The system designed for the subtask 1B processes sentences in two steps: (1) the sen-
tences are parsed with the system provided for the subtask 1A, and (2) the enhanced
edges are predicted with a small set of rules. This rule-based system does not predict
semantic roles.

The IMS system is trained on PolEval 2018 data. Except for training data, the system
uses the pre-trained word embeddings prepared for the CoNLL 2017 UD shared task.'!

4.3. Poleval2k18

Poleval2k18'? (Zapotoczny et al. 2017) is a neural system participating in both
subtasks of the Task 1. The system takes character-segmented words as input and
estimates word embeddings with a feedforward network. The sentence tokens repre-
sented with the embeddings are further processed with a bidirectional GRU recurrent
neural network. The governor of each token is predicted with an attention mech-
anism. The final dependency tree is estimated with Chu-Liu-Edmonds algorithm
(Chu and Liu 1965, Edmonds 1967). The dependency labels and the semantic roles
are predicted with an additional hidden layer followed by the soft-max function.
The system architecture is described in details in (Zapotoczny et al. 2017).

4.4. Drewutnia

Drewutnia (Skuczynska 2018) is a neural system participating in the subtask 1A and
predicting labelled dependency trees. The system takes tokenised and part-of-speech
tagged sentences in the CoNLL-U format as input and predicts dependency edges
with a bidirectional GRU recurrent neural network. In the postprocessing phase,
the predicted structures are normalised, i.e. the number of ROOT’s dependents is
reduced to one in each sentence and the cycles are resolved by attaching all nodes to
the dependent of the ROOT node. Drewutnia is trained on PolEval 2018 data.

5. Evaluation

5.1. Evaluation Measures

The measures defined for the purpose of the CoNLL 2018 UD shared task (Zeman
et al. 2017), i.e. LAS, MLAS, and BLEX, are also used in the PolEval 2018 shared task

Uhttps://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
Znttps://github.com/mzapotoczny/dependency-parser

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
https://github.com/mzapotoczny/dependency-parser

18 Alina Wréblewska

on dependency parsing of Polish. Additionally, we define two new measures ELAS
and SLAS for the evaluation of enhanced graphs and semantic roles. Each metric is
the harmonic mean (F;) of precision P and recall R (see equation below). P and R
are differently defined in the particular measures.

. 2PR
metric = ——
P+R

LAS (labelled attachment score) evaluates how many words are correctly parsed.
Precision P is the ratio of the number of the correct relations to the number of
the predicted nodes. Recall R is the ratio of the number of the correct relations to
the number of the gold standard nodes.

MLAS (morphology-aware labelled attachment score) is inspired by the CLAS metric
(Zeman et al. 2017) and extended with the evaluation of part-of-speech tags and
morphological features. Precision P is the ratio of the number of the correct words
to the total number of the predicted content words. Recall R is the ratio of the num-
ber of the correct words to the total number of the gold-standard content words.
The predicted word S is considered to be correct, if the following conditions are met:

— S is assigned the correct HEAD and DEPREL,

— S is assigned the correct UPOS, XPOS, and FEATS.

A word is considered to be a content word, if it fulfils one of the following content func-
tions: nsubj, obj, iobj, csubj, ccomp, xcomp, obl, vocative, expl, dislocated,
advcl, advmod, discourse, nmod, appos, nummod, acl, amod, conj, fixed, flat,
compound, 1list, parataxis, orphan, goeswith, reparandum, root, and dep.

BLEX (bi-lexical dependency score) evaluates dependencies and lexemes, i.e. it
combines content-word relations with lemmatisation. Precision P and recall R are
defined exactly the same as in MLAS, but the predicted word S is considered to be
correct, if the following conditions are met:

— S is assigned the correct HEAD and DEPREL,

— S is assigned the correct LEMMA.

ELAS (enhanced labelled attachment score) is defined for the purpose of evaluat-
ing enhanced graphs. ELAS is a strict extension of LAS. Precision P is the ratio of
the number of the correct words to the total number of the predicted nodes. Recall R is

Results of the PolEval 2018 Shared Task 1: Dependency Parsing 19

the ratio of the number of the correct words to the total number of the gold-standard
nodes. The predicted word S is considered to be correct, if the following conditions
are met:

— S is assigned the correct HEAD and DEPREL,

— S is assigned the correct set of enhanced edges (DEPS).

SLAS (semantic-aware labelled attachment score) is defined for evaluating depen-
dency trees with semantic roles of some dependents. Precision P and recall R are
defined exactly the same as in MLAS, but the predicted word S is considered to be
correct, if the following conditions are met:

— S is assigned the correct HEAD and DEPREL,

— S is assigned the correct value of SEM, i.e. it is either the correct semantic role
or the underscore indicating ‘no semantic role’.

5.2. Evaluation Script

The submitted files with predictions should be in the CoNLL-U format with the stan-
dard 10 columns (the subtask 1A) or in the CoNLL-U-like format with 11 columns
(the subtask 1B). The predicted analyses are evaluated with the script poleval2018_-
cykle.py.!® It is a modified version of the evaluation script prepared for the CoNLL
2018 UD shared task. The most important modification consists in adding two mea-
sures, ELAS and SLAS, for the purpose of evaluating enhanced graphs and semantic
roles, respectively. Next, instead of evaluating some selected morphological features
and the universal parts of the predicted dependency types, we evaluate all morpho-
logical features and the full dependency labels (i.e. universal dependency types
possibly extended with Polish-specific subtypes). The final modification is motivated
by the fact that some of the participating systems predict ill-formed dependency trees,
i.e. structures with cycles, multiple dependents of the ROOT node, etc. We decided
not to reject such submissions, but only to score incorrect trees with 0.

Bhttp://poleval.pl/taskl/poleval2018_cykle.py

http://poleval.pl/task1/poleval2018_cykle.py

20 Alina Wréblewska

6. Results

6.1. Task 1A

COMBO is the indisputable winner of the PolEval 2018 subtask 1A (see Table 3).
It predicts the Polish tags (xp0s) with F;-score of 93.44, the Polish lemmata with
F;-score of 97.27, and the dependency trees with LAS F;-score of 86.11. Apart from
external word embeddings it does not use other additional resources (e.g. dictionaries)
and external tools (e.g. morphological analysers). The predictions of the second best
system — IMS — are also of high quality. This is noteworthy, because it is the only
one system developed by a foreign team which participated in the PolEval 2018
competition. The results of the last two systems are below the baseline (UDPipe).
The main reason for the worse performance of these systems is that they predict
ill-formed dependency trees for some sentences (i.e. structures with cycles or multiple
roots). All tokens of these structures are scored 0 with respect to all metrics and thus
the overall scores are low.

Table 3: Results of the subtask 1A of the PolEval 2018 competition. The systems are ranked
by LAS F;-scores.

System UPOS XPOS FEATS LEMMA UAS LAS MLAS BLEX

1. COMBO 98.07 93.44 94.53 97.27 91.31 86.11 76.18 79.86

2. IMS 97.38 86.89 90.16 83.54 89.31 83.82 69.27 60.88

3. UDPipe (baseline) 96.81 86.05 88.02 95.61 83.32 78.93 64.33 71.17

4. Poleval2k18 93.62 83.2 8491 92.47 84.65 77.70 61.21 70.01

5. Drewutnia n/a n/a n/a n/a 33.98 27.39 n/a n/a
6.2. Task 1B

Three systems participate in the subtask 1B. COMBO predicts enhanced graphs and
semantic roles, IMS predicts only enhanced graphs, and Poleval2k18 predicts only
semantic roles. The results are presented in Table 4.

The rule-based IMS system outperforms the neural COMBO system in predicting
enhanced graphs, i.e. 81.9 vs. 80.66 (ELAS F;). Semantic roles are more accurately

Results of the PolEval 2018 Shared Task 1: Dependency Parsing 21

Table 4: Results of the subtask 1B of the PolEval 2018 competition. The systems are ranked
by ELAS F;-scores.

System ELAS SLAS
1. IMS 81.90 n/a
2. COMBO 80.66 77.30
3. Poleval2k18 n/a 67.84

4. UDPipe (baseline) 72.49 59.34

predicted by COMBO than by the Poleval2k18 system, i.e. 77.3 vs. 67.84 (SLAS F,).
All systems outperform the baseline (UDPipe).'*

7. Conclusions

The current edition of the PolEval competition featured the shared task on dependency
parsing of Polish, in which the participating teams trained and tested their systems on
Polish Dependency Bank in the UD-like format. There were two subtasks in the parsing
shared task. One of them was the morphosyntactic prediction of dependency trees, i.e.
the prediction of the dependency trees together with the prediction of the universal
part-of-speech tags, the Polish-specific tags, the morphological features, and the lem-
mata of the gold-standard tokens. The second subtask consisted in the prediction
of the enhanced graphs and the semantic roles of some dependents. Four systems
participated in the PolEval 2018 shared task on dependency parsing of Polish. Three
of them were pure neural systems and the IMS system used a neural network for
dependency prediction, conditional random fields for morphosyntactic predictions,
and rules for predicting enhanced graphs.

The predictions were evaluated with the metrics defined in the CoNLL 2018 UD shared
task. In addition to the CoNLL metrics, we defined two new metrics — ELAS and
SLAS, for the purpose of evaluating enhanced graphs and semantic roles. The systems’
predictions were of high quality. The winner of the subtask 1A — COMBO — pre-
dicted the labelled dependency trees of Polish sentences with LAS F;-score of 86.11.
According to our knowledge, it was the first shared task on predicting enhanced
graphs. The most accurate enhanced graphs were predicted by the IMS system (ELAS
F;-score of 81.9). The prediction of dependency trees extended with semantic roles

14In the baseline prediction, the enhanced edges are replaced with the predicted dependency edges,
i.e. the pairs HEAD:DEPREL are in the 9th column (DEPS), and the semantic roles in the 11th column are
replaced with single underscore characters (SEm).

22 Alina Wréblewska

of some dependents was also a novelty, as semantic role labelling is currently not
supported in Universal Dependencies.

Acknowledgements

The research presented in this paper was founded by the Polish Ministry of Science and
Higher Education as part of the investment in the CLARIN-PL research infrastructure.

References

Bjorkelund A., Falenska A., Yu X. and Kuhn J. (2017). IMS at the CoNLL 2017 UD
Shared Task: CRFs and Perceptrons Meet Neural Networks. [in:] Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies,
pp-40-51.

Chu Y. J. and Liu T. H. (1965). On the Shortest Arborescence of a Directed Graph.
»,Science Sinica”, 14, pp. 1396-1400.

Edmonds J. (1967). Optimum Branchings. ,Journal of Research of the National
Bureau of Standards”, 71B(4), pp. 233-240.

Falenska A., Bjorkelund A., Yu X. and Kuhn J. (2018). IMS at the PolEval 2018: Bulky
Ensemble Dependency Parser meets 12 Simple Rules for Predicting Enhanced Dependencies
in Polish. [in:] Ogrodniczuk and Kobylinski (2018), pp. 25-39.

Kobylinski L. and Ogrodniczuk M. (2017). Results of the PolEval 2017 Competition:
Part-of-Speech Tagging Shared Task. [in:] Vetulani Z. and Paroubek P (eds.), Proceedings
of the 8th Language & Technology Conference: Human Language Technologies as a
Challenge for Computer Science and Linguistics, pp. 362—-366. Fundacja Uniwersytetu
im. Adama Mickiewicza w Poznaniu.

Ogrodniczuk M. and Kobylinski L., eds. (2018). Proceedings of the PolEval 2018
Workshop, PolEval 2018. Institute of Computer Science, Polish Academy of Sciences.

Nivre J., de Marneffe M., Ginter E, Goldberg Y., Haji¢ J., Manning C. D., McDonald
R. T, Petrov S., Pyysalo S., Silveira N., Tsarfaty R. and Zeman D. (2016). Universal
Dependencies v1: A Multilingual Treebank Collection. [in:] Proceedings of the 10th
International Conference on Language Resources and Evaluation (LREC 2016), pp. 1659-
1666. European Language Resource Association.

Results of the PolEval 2018 Shared Task 1: Dependency Parsing 23

Ouchi H., Duh K. and Matsumoto Y. (2014). Improving Dependency Parsers with
Supertags. [in:] Proceedings of the 14th Conference of the European Chapter of the
Association for Computational Linguistics, (Volume 2: Short Papers), pp. 154-158.

Przepidrkowski A., Baritko M., Gorski R. L. and Lewandowska-Tomaszczyk B., eds.
(2012). Narodowy Korpus Jezyka Polskiego. Wydawnictwo Naukowe PWN, Warsaw.

Rybak P and Wréblewska A. (2018a). Semi-Supervised Neural System for Tagging,
Parsing and Lematization. [in:] Proceedings of the CoONLL 2018 Shared Task: Multi-
lingual Parsing from Raw Text to Universal Dependencies, pp. 45-54. Association for
Computational Linguistics.

Rybak P and Wroéblewska A. (2018b). Semi-Supervised Neural System for Tagging,
Parsing and Lematization. Addendum. [in:] Ogrodniczuk and Kobylinski (2018),
pp. 43-45.

Sagae K. and Lavie A. (2006). Parser Combination by Reparsing. [in:] Proceedings of
the Human Language Technology Conference of the NAACL (Companion Volume: Short
Papers), pp. 129-132. Association for Computational Linguistics.

Skuczynska B. (2018). Drewutnia: Frugal Approach to Dependency Parsing. [in:]
Ogrodniczuk and Kobylinski (2018), pp. 40-47.

Straka M. and Strakova J. (2017). Tokenizing, POS Tagging, Lemmatizing and Parsing
UD 2.0 with UDPipe. [in:] Proceedings of the CoNLL 2017 Shared Task: Multilin-
gual Parsing from Raw Text to Universal Dependencies, pp.88-99. Association for
Computational Linguistics.

Wawer A. and Ogrodniczuk M. (2017). Results of the PolEval 2017 Competition:
Sentiment Analysis Shared Task. [in:] Vetulani Z. and Paroubek P. (eds.), Proceedings
of the 8th Language & Technology Conference: Human Language Technologies as a
Challenge for Computer Science and Linguistics, pp. 406—409. Fundacja Uniwersytetu
im. Adama Mickiewicza w Poznaniu.

Wrdéblewska A. (2012). Polish Dependency Bank. ,Linguistic Issues in Language
Technology”, 7(1), pp. 1-15.

Wrdéblewska A. (2014). Polish Dependency Parser Trained on an Automatically Induced
Dependency Bank. Ph.D. dissertation, Institute of Computer Science, Polish Academy
of Sciences, Warsaw.

Wréblewska A. (2018). Extended and Enhanced Polish Dependency Bank in Universal
Dependencies Format. [in:] Proceedings of Universal Dependencies Workshop 2018
(UDW 2018).

24 Alina Wréblewska

Wréblewska A. and Krasnowska-Kieras K. (2017). Polish Evaluation Dataset for
Compositional Distributional Semantics Models. [in:] Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp- 784-792. Association for Computational Linguistics.

Wrdblewska A. and Przepidrkowski A. (2014). Towards a Weighted Induction Method of
Dependency Annotation. [in:] Przepidrkowski A. and Ogrodniczuk M. (eds.), Advances
in Natural Language Processing: Proceedings of the 9th International Conference on NLP
(PolTAL 2014), Lecture Notes in Artificial Intelligence vol. 8686, pp. 164-176. Springer
International Publishing, Heidelberg.

Zapotoczny M., Rychlikowski P and Chorowski J. (2017). On Multilingual Training of
Neural Dependency Parsers. [in:] Ekstein K. and Matousek V. (eds.), Text, Speech, and
Dialogue. Proceedings of the 20th International Conference (TSD 2017), Lecture Notes
in Artificial Intelligence vol. 10415, pp. 326-334. Springer International Publishing.

Zeman D., Popel M., Straka M., Haji¢ J., Nivre J., Ginter E, Luotolahti J., Pyysalo S.,
Petrov S., Potthast M., Tyers E, Badmaeva E., Gokirmak M., Nedoluzhko A., Cinkova
S., Haji¢ jr. J., Hlavacova J., Kettnerova V,, UreSova Z., Kanerva J., Ojala S., Missila
A., Manning C., Schuster S., Reddy S., Taji D., Habash N., Leung H., de Marneffe
M.-C., Sanguinetti M., Simi M., Kanayama H., de Paiva V., Droganova K., Alonso
H. M., Coltekin C., Sulubacak U., Uszkoreit H., Macketanz V,, Burchardt A., Harris K.,
Marheinecke K., Rehm G., Kayadelen T, Attia M., Elkahky A., Yu Z., Pitler E., Lertpradit
S., Mandl M., Kirchner J., Alcalde E H., Strnadova J., Banerjee E., Manurung R., Stella
A., Shimada A., Kwak S., Mendonca G., Lando T., Nitisaroj R. and Li J. (2017). CoNLL
2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. [in:]
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pp. 1-19. Association for Computational Linguistics.

Zeman D., Hajic J., Popel M., Potthast M., Straka M., Ginter E, Nivre J. and Petrov
S. (2018). CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal
Dependencies. [in:] Proceedings of the CONLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pp. 1-20. Association for Computational
Linguistics.

IMS at the PolEval 2018: A Bulky Ensemble
Dependency Parser Meets 12 Simple Rules
for Predicting Enhanced Dependencies in Polish

Agnieszka Falenska, Anders Bjorkelund, Xiang Yu, Jonas Kuhn
(Institute for Natural Language Processing, University of Stuttgart, Germany)

Abstract

This paper presents the IMS contribution to the PolEval 2018 Shared Task.! We
submitted systems for both of the Subtasks of Task 1. In Subtask (A), which was about
dependency parsing, we used our ensemble system from the CoNLL 2017 UD Shared
Task. The system first preprocesses the sentences with a CRF POS/morphological
tagger and predicts supertags with a neural tagger. Then, it employs multiple instances
of three different parsers and merges their outputs by applying blending. The system
achieved the second place out of four participating teams. In this paper we show
which components of the system were the most responsible for its final performance.

The goal of Subtask 1B was to predict enhanced graphs. Our approach consisted of
two steps: parsing the sentences with our ensemble system from Subtask 1A, and
applying 12 simple rules to obtain the final dependency graphs. The rules introduce
additional enhanced arcs only for tokens with “conj” heads (conjuncts). They do not
predict semantic relations at all. The system ranked first out of three participating
teams. In this paper we show examples of rules we designed and analyze the relation
between the quality of automatically parsed trees and the accuracy of the enhanced
graphs.

Keywords

dependency parsing, enhanced dependencies, ensemble parsers

"http://poleval.pl

http://poleval.pl

26 Agnieszka Falenska, Anders Bjorkelund, Xiang Yu, Jonas Kuhn

1. Introduction

This paper presents the IMS contribution to the PolEval 2018 Shared Task (POLEVAL18-
ST). The Shared Task consisted of three Tasks: (1) Dependency Parsing, (2) Named
Entity Recognition, and (3) Language Models. Our team took part only in the Task 1
and submitted systems for both of its Subtasks 1A and 1B.

The goal of the Subtask 1A was predicting morphosyntactic analyses and dependency
trees for given sentences. The IMS submission was based on our ensemble system
from the CoNLL 2017 UD Shared Task (Zeman et al. 2017). The system (described
in detail in (Bjorkelund et al. 2017) and henceforth referred to as IMS17) relies on
established techniques for improving accuracy of dependency parsers. It performs its
own preprocessing with a CRF tagger, incorporates supertags into the feature model
of a dependency parser (Ouchi et al. 2014), and combines multiple parsers through
blending (also known as reparsing; Sagae and Lavie 2006).

The original system only needed few modifications to be applied in the PolEval18-ST
setting. First, the organizers provided gold-standard tokenization so we excluded
the tokenization modules from the system. Second, one of the metrics used in the
PolEval18-ST was BLEX. While the metric takes lemmas into consideration we added
a lemmatizer to the preprocessing steps. Finally, IMS17 was designed to run on
the TIRA platform (Potthast et al. 2014), where only a limited amount of CPU time
was available to parse a multitude of test sets. The maximal number of instances of
individual parsers thus had to be limited to ensure that parsing would end within the
given time. Since in the POLEVAL18-ST setting the parsing time was not limited we
removed the time constraint from the search procedure of the system. We call the
modified version IMS18.

The aim of Subtask 1B was to predict enhanced dependency graphs and additional
semantic labels. Our approach consisted of two steps: parsing the sentences to
surface dependency trees with our system from Subtask 1A, and applying a rule-based
system to extend the trees with enhanced arcs. Since the POLEVAL18-ST data contains
enhanced dependencies only for conjuncts, our set of manually designed rules is small
and introduces new relations only for tokens with “conj” heads (it does not predict
semantic labels at all).

All components of both submitted systems (including POS tagger, morphological
analyzers, and lemmatizer) were trained only on the training treebank. Out of all the
additional resources allowed by the organizers we used only the pre-trained word
embeddings prepared for the CoNLL 2017 UD Shared Task.? We did not employ any

Zhttps://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989

IMS at the PolEval 2018 27

Polish-specific tools as they (or the data their models were trained on) was not among
the resources allowed by the organizers.

The remainder of this paper is organized as follows. Section 2 discusses our submission
to Subtask 1A and analyzes which components of the system were the most responsible
for its final performance. In Section 3 we describe our submission to Subtask 1B,
show examples of the designed rules, and analyze the relation between the quality of
automatically parsed trees and the accuracy of the enhanced graphs. Our official test
set results are shown in Section 4 and Section 5 concludes.

2. Subtask 1A: Morphosyntactic Prediction of Dependency
Trees

The focus of Subtask 1A was morphosyntactic prediction and dependency parsing.
The training and development data contained information about gold-standard tok-
enization, universal part-of-speech tags (UPOS), Polish-specific tags (XPOS), universal
morphological features (UFeats), lemmas, and dependency trees. The dependency
trees were annotated with the Universal Dependencies (UD) (Nivre et al. 2016) ac-
cording to the guidelines of UD v. 2.> To make the Shared Task more accessible to
participants, the test data was released with baseline predictions for all preprocessing
steps using the baseline UDPipe 1.2 system (Straka et al. 2016).

2.1. System Description

Figure 1 shows an overview of the IMS18 system architecture. The architecture
can be divided into two steps: preprocessing and parsing. The system uses its own
preprocessing tools, so we did not utilize the baseline UDPipe predictions provided by
the ST organizers. All the preprocessing tools annotate the training data via 5-fold
jackknifing. The parsing step consists of running multiple instances of three different
baseline parsers and combining them into an ensemble system. All the trained models
for both of the steps, as well as code developed during this Shared Task will be made
available on the first author’s page.

Below we give a summary of all the components of the system and describe changes
introduced to the IMS17 system needed to adapt it to the POLEVAL18-ST setting.

Lemmatization is not performed by IMS17. Since BLEX, one of the metrics used in
the PolEval18-ST, takes lemmas into consideration, we added a lemmatizer to the

*http://universaldependencies.org/

http://universaldependencies.org/

28 Agnieszka Falenska, Anders Bjorkelund, Xiang Yu, Jonas Kuhn

Preprocessing Parsing

oo TS TTTTTTTTTTT T T WSS TTTTTTTTTTTTTTTTTTTTTTN |
I 1 I
I I

| l 8 x GP !
| H random seeds: 1 ... 8 :
I 1 I
I I I
I I

I : | :
l MATE MARMoOT TAGNN || 8§x TP }

= lemmas [—{ UPOS,Feats [—| STags L 4 x 12r —{ BLEND-OPT =

| XPOS N 4 x r21 !
I

I : : :
I 1 I
I I

| l 8 x TN !
: H —1 2 x I2r-rand, 2 x 12r-embed :
: H 2 x r2l-rand, 2 x r2l-embed :
I I

Figure 1: IMS18 system architecture

preprocessing steps. For this purpose we used lemmatizer from the mate-tools with
default hyperparameters.*

Part-of-Speech and Morphological Tagging is performed within IMS17 by MARMOT,
a morphological CRF tagger (Miiller et al. 2013).°> UPOS and UFeats are predicted
jointly. Since IMS17 did not use XPOS tags, we added an additional CRF tagger
predicting only XPOS tags (separately from other preprocessing steps). We used
MARMOT with default hyperparameters.

Supertags (Joshi and Bangalore 1994) are labels for tokens which encode syntactic
information, e.g., the head direction or the subcategorization frame. IMS17 follows
(Ouchi et al. 2014) and extracts supertags from the training treebank. Then, it
incorporates them into the feature models of all baseline dependency parsers. Su-
pertags are predicted with an in-house neural-based tagger (TAGNN) (Yu et al. 2017).°

Baseline parsers used by IMS17 differ in terms of architecture and employed training
methods. The system uses three baseline parsers: (1) The graph-based perceptron
parser from mate-tools (Bohnet 2010), henceforth referred to as GP (the parser
has been slightly modified to handle features based on supertags and shuffle training
instances between epochs).” (2) An in-house transition-based beam-perceptron

“https://code.google.com/archive/p/mate-tools/

“http://cistern.cis.lmu.de/marmot/

*https://github.com/EggplantElf/sclem2017-tagger

7Since there are no time constraints in the POLEVAL18-ST (unlike the CoNLL 2017 Shared Task), GP
is applied to all sentences, cf. (Bjorkelund et al. 2017) for details on how some sentences were skipped
to save time in the IMS17 system.

https://code.google.com/archive/p/mate-tools/
http://cistern.cis.lmu.de/marmot/
https://github.com/EggplantElf/sclem2017-tagger

IMS at the PolEval 2018 29

parser (Bjorkelund and Nivre 2015), henceforth referred to as TP. (3) An in-house
transition-based greedy neural parser (Yu and Vu 2017), henceforth referred to as
TN. We use the default hyperparameters during training and testing of all the three
baseline parsers.

Blending, i.e., combining outputs of multiple different baseline parsers, can lead to
improved performance (Sagae and Lavie 2006). IMS17 parses every sentence with
each baseline parser and combines all the predicted trees into one graph. It assigns
scores to arcs depending on how frequent they are in the predicted trees. Then it
uses the Chu-Liu-Edmonds algorithm (Chu and Liu 1965, Edmonds 1967) to find the
maximum spanning tree in the combined graph. For every resulting arc it selects the
most frequent label across all the labels previously assigned to it.

To enlarge the number of parsers taking part in the final ensemble IMS17 trains
multiple instances of each baseline parser using different random seeds: (1) eight
GP instances, (2) eight TP instances which differ in the direction of parsing — four
parse from left to right (TP-12r) and four from right to left (TP-r2l), (3) eight TN
instances which differ in the direction of parsing and the used word embeddings - four
use pre-trained embeddings (TN-12r-embed, TN-r2l-embed) and four use randomly
initialized embeddings (TN-12r-rand, TN-r2l-rand).

The final component of the IMS17 system (BLEND-OPT) selects the best possible
blending setting. It checks all the possible combinations of the above-mentioned
instances (9 x 5 x5 x 3 x 3 x 3 x 3 = 18,225 possibilities) and selects the one which
achieves the highest LAS score on the development set. The original IMS17 limits the
maximal number of instances of individual parsers to ensure that parsing will end
within a restricted time. Since in the POLEVAL18-ST setting the parsing time was not
limited we removed the time constraint from the search procedure BLEND-OPT.

Finally, since the UD guidelines do not allow multiple root nodes, we re-attach all
excessive root dependents in a chain manner, i.e., every root dependent is attached to
the previous one.

2.2. Evaluation of the Components of the System

In this section we evaluate all the components of the submitted IMS18 system with
the evaluation script provided by the ST organizers. We use the UDPipe 1.2 system
(as provided by the ST organizers) as a baseline through all the steps.

Preprocessing and Supertags. We begin with evaluating the preprocessing compo-
nents of our system on the development data (see Table 1). We find that UDPipe

30 Agnieszka Falenska, Anders Bjorkelund, Xiang Yu, Jonas Kuhn

is much better at predicting lemmas than mate-tools and it surpasses it by more
than 10 points. On the contrary, MARMOT outperforms UDPipe on all the other
tagging tasks, with the highest gain of more than two points on the task of predicting
morphological features.

Table 1: Preprocessing accuracy (F; score) on the development set

Lemma UPOS XPOS UFeats

UDPipe 94.41 97.24 86.50 88.30
IMS 84.09 97.69 87.00 90.52

To see how the above-mentioned differences influence the parsing accuracy we run the
baseline parsers (GP, TP, and TN) in four incremental settings: (1) using UPOS and
morphological features predicted by UDPipe, (2) replacing UPOS and morphological
features with MARMOT’s predictions, (3) adding lemmas, (4) adding supertags. Ta-
ble 2 shows LAS scores for the three baseline parsers for the consecutive experiments.
Replacing UDPipe’s UPOS and morphological features with the predictions from
MARMOT improves accuracy by 0.42 points on average. The introduction of lemmas
improves only the GP parser and leads to minuscule improvements for the other two.
The step which influences the final accuracy the most is the addition of supertags. It
brings an additional 0.9 points on average (with the biggest gain for TP of 1.54 points).

Table 2: Gains in parsing accuracy (LAS) for by incrementally replacing the UDPipe prepro-
cessing baseline

UDPipe MARMOT +lemma +STags
GP 83.36 +0.27 +0.30 +1.03
TP (121) 81.80 +0.55 +0.01 +1.54
TN (12r-rand) 82.77 +0.43 +0.03 +0.15
average 82.64 +0.42 +0.11 +0.90

Parsing and Blending. Table 3 shows parsing results on the development set. The
relation between baseline parsers (rows 2, 3, and 4) is the same as in (Bjorkelund
et al. 2017): GP is the strongest method, TP ranked second, and TN performs the
worst. All the baseline parsers surpass the UDPipe parser (row 1) in terms of the
LAS and MLAS measures. Since the measure BLEX uses lemmas and UDPipe is much
better in terms of lemmatization, it achieves higher BLEX than the baseline parsers
(in fact it achieves the highest BLEX across all the compared methods).

IMS at the PolEval 2018 31

Table 3: Parsing accuracy (F; scores) on the development set. The highest value in each
column is bold

LAS MLAS BLEX
1 UDPipe 76.58 61.81 71.39
2 GP 84.96 71.32 63.04
3 TP (2r) 83.80 70.14 61.82
4 TN (12r-rand) 83.39 69.66 61.34
5 BLEND-BL 86.04 72.27 63.83
6 BLEND-OPT 86.24 72.46 63.98

Rows 5 and 6 show results of two separate blends. BLEND-BL (row 5) is an arbitrarily
selected combination of 4+4+4 instances: four GP instances, four TP instances (two
TP-12r and two TP-r2l), and four TN instances (TN-12r-rand, TN-r2l-rand, TN-12r-
embed, TN-12r-embed). Comparing rows (2 — 4 with row 5 we see that blending
parsers ends with a strong boost over the baselines, which corroborates the findings
of (Sagae and Lavie 2006, Bjorkelund et al. 2017). The blended accuracy surpasses
the strongest baseline parser GP by more than one point.

Finally, searching for the optimal combination yields an additional small improvement
of 0.2 points. The best combination selected by the search contains: seven instances
of GP, three instances of TP (two TP-12r and one TP-r2l) and all the instances of TN.

3. Subtask 1B: Beyond Dependency Tree

The goal of Subtask 1B was to predict labeled dependency graphs and semantic labels.
The dependency graphs used in the ST were UD dependency trees extended with
additional enhanced arcs. The arcs encoded shared dependents and shared governors
of conjuncts. The semantic labels (e.g. Experiencer, Place, Condition) were used to
annotate additional semantic meanings of tokens.

3.1. System Description

Our submission to the Subtask 1B followed (Schuster and Manning 2016, Candito
et al. 2017) and carried out rule-based augmentation. The method consisted of two
steps. First, we parsed all sentences to obtain surface dependency trees. Since the
training data for Subtasks 1A and 1B was the same, we performed parsing with the

32 Agnieszka Falenska, Anders Bjorkelund, Xiang Yu, Jonas Kuhn

same BLEND-OPT system as described in Section 2.1. In the second step, we applied
12 simple rules to the predicted trees and augmented them with enhanced relations.

The rules of the system were designed manually and guided by intuition of a
Polish native speaker while analyzing gold-standard graphs from the training
part of the treebank. As the enhanced relations in the treebank mostly apply
to conjuncts, i.e., tokens connected with the relation “conj” to their heads, our
rules only apply to such tokens. We define two main rules: Head, which predicts
additional heads, and Children, which adds enhanced children. The remaining 10
out of the 12 rules serve as filtering steps to improve the accuracy of the Children rule.

The Head Rule introduces enhanced arcs for all the tokens whose head is “conj” and
connects them to their grandparents (see Figure 2a). Figure 2b shows an example
of a sentence where an enhanced arc was introduced by the Head rule. The word
pracujg (eng. they-work) received an additional head ROOT.

When introducing enhanced heads for “conj” tokens, this rule achieves an F-score of
99.40 on the gold-standard trees from the training data.

ROOT Wracaja i pracuja solidnie
Grand Head T They-come-back and work solidly
\ # \\\ f
- -l Neddee .
(a) Head rule — adds the grand- (b) Example sentence (id train-s9826) where the
parent as an additional en- Head rule introduces a correct enhanced “root” arc

hanced head. Applies to all to-
kens with “conj” heads

Figure 2: The Head rule

The Children Rule adds all the siblings of a “conj” token as its dependents (see
Figure 3a). Figure 3b shows an example of a sentence where an enhanced arc was
introduced by the Children rule. The word zawsze (eng. always) is a sibling of the
“conj” token przerazaty (eng. terrified) and therefore got attached to it by an “advmod”
arc.

When introducing enhanced children of “conj” tokens this rule alone is too generous.
On gold trees from the training data it has a perfect recall, it introduces a lot of
incorrect arcs. It achieves a precision of only 21.64, resulting in an an F-score of 35.58.

IMS at the PolEval 2018 33

We tackled this problem by designing 10 additional filtering rules which remove some
suspicious arcs. Combined with the 10 filtering rules the Children rule achieves an
F-score of 73.55 on the gold trees from the training data. Below we give examples of
three such rules: labels, advmod,, obj.

conj

nsubj
[[& 1
dep \

Parowoz zawsze fascynowa i rzeraza:
Head Sibling T v v y P ty
A I

Locomotives always fascinated and terrified
1

\ ! A
\ U 1
‘[l /
(a) The Children rule — (b) Example sentence (id train-s9353) where the Children
adds siblings as enhanced rule predicts a correct enhanced “advmod” arc

dependents

Figure 3: The Children rule

The filter labels removes all the enhanced arcs with labels that are not among
the ten most common ones: case, nsubj, mark, obl, advmod, amod, cop, obj, dis-
course:comment, advcl.

The filter advmod; is the first of four filtering rules that remove enhanced arcs with
label “advmod”. It applies to tokens which have their own “advmod” basic modifiers
(see Figure 4a). The intuition is that if the token has its own adverbial modifier then
most likely the modifier of its head does not refer to it. Figure 4b shows an example
of a sentence where advmod, correctly removed an arc. Since the word miaukngt
(eng. meowed) has its own adverbial modifier znowu (eng. again) the enhanced arc
to obok (eng. nearby) was removed.

When applied to the training data, this filter removed 105 enhanced arcs with an
accuracy of 93%.

The filter obj is the only filter which removes arcs with label “obj”. It applies when
the enhanced “obj” modifier appears before the token in the sentence (see Figure 5a).
The intuition is that in Polish “obj” modifiers tend to appear after both of the conjuncts.
For example, in sentence Podziwiali i doceniali jq tez uczniowie (id train-s4812; eng.
Admired and appreciated her also students) the “obj” modifier jqg (eng. her) appears
after both of Podziwiali (eng. admired) and doceniali (eng. appreciated) and modifies
both of them. In contrast, Figure 5b shows an example of a sentence where the filter

34 Agnieszka Falenska, Anders Bjorkelund, Xiang Yu, Jonas Kuhn

conj

Kot usiadt obok i znowu miauknalt

Head Sibl:”g ,T Child Cat sat nearby and again meowed
\ ! A| ,I
____ [admod ____)
(a) The filter advmod;: T has (b) Example sentence (id train-s6417) where the filter
its own “advmod” dependent advmod, correctly removes an enhanced arc

Figure 4: The filter advmod,

obj correctly removed an arc. The rule Children introduced an arc from the token
spiewajq (eng. they-sing) to rece (eng. hands). But since the word rece appears before
Spiewajq the arc was removed.

When applied to the training data, this filter removed 854 enhanced arcs with an

accuracy of 96%.

conj

obj

Head Sibling T Podnosza do gbéry rece , $piewaja
>S l;bling They-raise up hands , they-sing
A [
(a) The filter obj: sibling with (b) Example sentence (id train-s12456) where the fil-
label “obj” appears before T in ter obj correctly removes an enhanced arc

the sentence

Figure 5: The filter obj

3.2. Evaluation of the Rules

In this section we evaluate the rules on the development set to test if they generalize
well. As a baseline we use the system without any rules, i.e., we run the evaluation
script on trees without any enhanced arcs.

We start with oracle experiments and apply the rules to gold-standard trees (see
Table 4; Column 2). In this scenario the baseline achieves a very high accuracy of

IMS at the PolEval 2018 35

94.23 ELAS. Adding the Head rule gives a big boost of almost 4 points, resulting in an
ELAS of 98. As expected, the pure Children rule introduces too many incorrect arcs
and considerably deteriorates the performance. All the consecutive filters (Iabels,
advmod;, obj) give small improvements, but together (see Table 4; the final row)
they not only recover the drop caused by the Children rule but also improve the total
accuracy by additional 0.73 points.

Next, we analyze the situation when enhanced arcs are introduced on automatically
parsed trees. We apply the rules to outputs of two systems: the strongest parsing
baseline GP and the full ensemble system BLEND-OPT. As expected, replacing gold-
standard trees with a parser’s predictions results in a big drop in performance: baseline
accuracy decreases from 94.23 to 80.68 for GP and 81.83 for BLEND-OPT. Apart from
the lower starting point, the rules behave similarly to the setting with gold-standard
trees: Head gives a big boost, Children causes a big drop in accuracy, while the 12
rules together perform better than Head alone. Finally, comparing the accuracy of
GP and BLEND-OPT shows that the parsing accuracy directly translates into enhanced
parsing accuracy — BLEND-OPT surpasses GP by 1.28 in terms of LAS (cf. Table 3) and
the advantage stays the same in terms of ELAS (1.31 points).

Table 4: Gains in enhanced parsing accuracy (ELAS) on the development set for incremental
changes to the set of rules and different input trees

Gold GP BLEND-OPT
No rules 94.23 80.68 81.83
+ Head 98.00 82.94 84.15
+ Children 93.19 78.12 79.25
— labels 96.82 81.26 82.45
- advmod, 96.98 81.45 82.65
- obj 97.37 81.84 83.05
12 rules 98.73 83.28 84.60

4. Test Results

The final results on the test set are shown in Table 5. In Subtask 1A we ranked second
in terms of LAS score (83.82) and MLAS score (69.27) and were behind the COMBO
team by 2.29 and 6.9 points respectively. We achieved the third best result in terms
of BLEX score due to our poor lemmatization accuracy. In Subtask 1B we ranked first
with an ELAS score of 81.90. Since we did not predict any semantic labels our SLAS
score can be treated as a baseline result of running the evaluation script only on trees.

36 Agnieszka Falenska, Anders Bjorkelund, Xiang Yu, Jonas Kuhn

Table 5: Test results for all the systems participating in Task 1. The highest value in each
column is bold

LAS MLAS BLEX ELAS SLAS
COMBO 86.11 76.18 79.86 IMS 81.90 65.98
IMS 83.82 69.27 60.88 COMBO 80.66 77.30
Poleval2k18 77.70 61.21 70.01 Poleval2k18 66.73 67.84
Drewutnia 27.39 18.12 25.24
(a) Subtask 1A: dependency parsing (b) Subtask 1B: enhanced parsing

5. Conclusion

We have presented the IMS contribution to the PolEval 2018 Shared Task.

In Subtask 1A we re-used our system from the CoNLL 2017 UD Shared Task. We
confirmed our previous findings that strong preprocessing, supertags, and the use of
diverse parsers for blending are important factors influencing the parsing accuracy.
We extended those findings to the PolEval treebank which was a new test case for
the system. The treebank differs from traditional treebanks since it is mostly built
from selected sentences containing difficult syntactic constructions, instead of being
sampled from some source at random.

In Subtask 1B we extended the bulky ensemble system from Subtask 1A by a set
of 12 simple rules predicting enhanced arcs. We showed that a successful rule-
based augmentation strongly depends on the employed parsing system. As we have
demonstrated, if perfect parsing is assumed (by using gold trees), the simple rules we
have developed are able to achieve an extremely high ELAS, leaving little space for
further improvements. However, since the rules are not built to handle parsing errors,
the parsing accuracy directly translates into performance on predicting the enhanced
arcs.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) via the SFB
732, project D8.

IMS at the PolEval 2018 37

References

Bjorkelund A. and Nivre J. (2015). Non-deterministic Oracles for Unrestricted Non-
projective Transition-based Dependency Parsing. [in:] Proceedings of the 14th Interna-
tional Conference on Parsing Technologies, pp. 76-86. Association for Computational
Linguistics.

Bjorkelund A., Falenska A., Yu X. and Kuhn J. (2017). IMS at the CoNLL 2017 UD
Shared Task: CRFs and Perceptrons Meet Neural Networks. [in:] Proceedings of CoNLL
2017 Shared Task, pp. 40-51.

Bohnet B. (2010). Top Accuracy and Fast Dependency Parsing is not a Contradiction.
[in:] Proceedings of the 23rd International Conference on Computational Linguistics
(COLING 2010), pp-89-97. COLING 2010 Organizing Committee.

Candito M., Guillaume B., Perrier G. and Seddah D. (2017). Enhanced UD Dependencies
with Neutralized Diathesis Alternation. [in:] Proceedings of the 4th International
Conference on Dependency Linguistics (Depling 2017), pp.42-53. Association for
Computational Linguistics.

Chu Y. and Liu T. (1965). On the Shortest Aborescence of a Directed Graph. ,Science
Sinica”, 14, pp. 1396-1400.

Edmonds J. (1967). Optimum Branchings. ,Journal of Research of the National
Bureau of Standards”, 71(B), pp. 233-240.

Joshi A. K. and Bangalore S. (1994). Disambiguation of Super Parts of Speech (or
Supertags): Almost Parsing. [in:] Proceedings of the 15th Conference on Computational
Linguistics — Volume 1 (COLING ’94), pp. 154-160. Association for Computational
Linguistics.

Miiller T., Schmid H. and Schiitze H. (2013). Efficient Higher-Order CRFs for Mor-
phological Tagging. [in:] Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pp. 322-332. Association for Computational Linguistics.

Nivre J., de Marneffe M.-C., Ginter E, Goldberg Y., Haji¢ J., Manning C., McDonald
R., Petrov S., Pyysalo S., Silveira N., Tsarfaty R. and Zeman D. (2016). Universal
Dependencies v1: A multilingual Treebank Collection. [in:] Proceedings of the 10th
International Conference on Language Resources and Evaluation (LREC 2016), pp. 1659-
1666. European Language Resources Association.

38 Agnieszka Falenska, Anders Bjorkelund, Xiang Yu, Jonas Kuhn

Ouchi H., Duh K. and Matsumoto Y. (2014). Improving Dependency Parsers with
Supertags. [in:] Proceedings of the 14th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, volume 2: Short Papers, pp. 154-158. Association
for Computational Linguistics.

Potthast M., Gollub T., Rangel E, Rosso P, Stamatatos E. and Stein B. (2014). Improving
the Reproducibility of PAN’s Shared Tasks: Plagiarism Detection, Author Identification,
and Author Profiling. [in:] Kanoulas E., Lupu M., Clough P, Sanderson M., Hall M.,
Hanbury A. and Toms E. (eds.), Information Access Evaluation meets Multilinguality,
Multimodality, and Visualization. 5th International Conference of the CLEF Initiative
(CLEF 14), pp. 268-299, Berlin Heidelberg New York. Springer.

Sagae K. and Lavie A. (2006). Parser Combination by Reparsing. [in:] Proceedings of
the Human Language Technology Conference of the NAACL, Companion Volume: Short
Papers, pp. 129-132. Association for Computational Linguistics.

Schuster S. and Manning C. D. (2016). Enhanced English Universal Dependencies: An
Improved Representation for Natural Language Understanding Tasks. [in:] Proceedings
of the 10th International Conference on Language Resources and Evaluation (LREC
2016), pp. 23-28. European Language Resources Association.

Straka M., Haji¢ J. and Strakova J. (2016). UDPipe: Trainable Pipeline for Processing
CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and Pars-
ing. [in:] Proceedings of the 10th International Conference on Language Resources and
Evaluation (LREC 2016), pp.4290-4297. European Language Resources Association.

Yu X. and Vu N. T. (2017). Character Composition Model with Convolutional Neural
Networks for Dependency Parsing on Morphologically Rich Languages. [in:] Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), pp. 672—-678. Association for Computational Linguistics.

Yu X., Falenska A. and Vu N. T. (2017). A General-purpose Tagger with Convolutional
Neural Networks. ,arXiv:1706.01723”.

Zeman D., Popel M., Straka M., Haji¢ J., Nivre J., Ginter E, Luotolahti J., Pyysalo S.,
Petrov S., Potthast M., Tyers E, Badmaeva E., Gokirmak M., Nedoluzhko A., Cinkova
S., Hajic jr. J., Hlavacova J., Kettnerova V., UreSova Z., Kanerva J., Ojala S., Missila
A., Manning C., Schuster S., Reddy S., Taji D., Habash N., Leung H., de Marneffe
M.-C., Sanguinetti M., Simi M., Kanayama H., de Paiva V,, Droganova K., Alonso
H. M., Coltekin C., Sulubacak U., Uszkoreit H., Macketanz V., Burchardt A., Harris K.,
Marheinecke K., Rehm G., Kayadelen T., Attia M., Elkahky A., Yu Z., Pitler E., Lertpradit
S., Mandl M., Kirchner J., Alcalde E H., Strnadova J., Banerjee E., Manurung R., Stella

IMS at the PolEval 2018 39

A., Shimada A., Kwak S., Mendonca G., Lando T., Nitisaroj R. and Li J. (2017). CoNLL
2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. [in:]
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pp. 1-19. Association for Computational Linguistics.

Drewutnia: a Frugal Approach
to Dependency Parsing

Beata Skuczynska (University of Warsaw)

Abstract

The paper presents system for dependency parsing of Polish sentences based on
bidirectional GRU recurrent neural network. Drewutnia competed in PolEval 2018
1A task and achieved 4th place in ranking.

Keywords

dependency parsing, GRU, Natural Language Processing

1. Introduction

Dependency parsers, along with lemmatizers, part-of-speech taggers, named entity
recognizers, etc., are considered to be basic natural language processing tools. There-
fore they must be fast and domain-independent. Fields where they might be helpful
are, for instance, text summarization, machine translation or question-answering
systems.

The aim of dependency parsing task is to obtain the predicate-argument structure of
the sentence. Example of a sentence analyzed in such a way is depicted in Figure 1.
Tokens are paired, each of them (but one) has assigned parent (governor) and a label
(ex. subj) that describes the relation in pair. The exception is a root token (labeled
with root) which doesn’t have parent. More theoretical discussion on conception of
dependency trees could be found in (Wréblewska 2014).

42 Beata Skuczyniska

root

punct
subj obj

Maria kosi trawnik
Maria mows lawn

Figure 1: Example of dependency tree for Polish sentence

2. Previous Work

Vast majority of currently used and developed dependency parsers are statistical.
There are two main approaches to create such parsers: graph-based (ex. MATE parser;
Bohnet 2010) and transition-based (ex. MaltParser; Nivre et al. 2007). The former
creates a set of candidate trees, scores them upon the previously trained model and
returns the one that achieved the highest result. The latter deterministically parses
sentence, building dependency structure based on transitions (shift-reduce actions)
predicted by a classifier. Both models are available for Polish language as trained
on Polish Dependency Bank!. The last published results of their performance (LAS
score, see Section 5) are 0.85 for Mate parser and 0.82 for Malt parser (Wréblewska
2018). However, growing popularity of usage of neural networks in natural language
processing reached also dependency parsing problem. In this year’s edition of CoNLL
Shared Task at least half of the submitted systems are making use of various neural
architectures (Zeman and Haji¢ 2018b).

3. Data

Dataset used to train and evaluate presented system is the one provided by PolEval
2018 organizers (Ogrodniczuk and Kobylinski 2018). It is annotated according to
Universal Dependencies guideline and kept in CONLL-U format (Zeman and Haji¢
2018c). The aim of Drewutnia was only to predict labels and parent of tokens,
so the input sentences were preprocessed i.e. splitted, tokenized and tagged with
universal part-of-speech tags, Polish-specific tags, morphological features, and lemmas
of particular tokens.

http://zil.ipipan.waw.pl/PDB

Drewutnia: a Frugal Approach to Dependency Parsing 43

4. System Description

Drewutnia’s pipeline consists of a few steps. The preparation of data is described
in subsection 4.1. The neural network design is presented in subsection 4.2 and its
output in subsection 4.3. Finally, important postprocessing steps are described in
subsection 4.4.

4.1. Preprocessing

The input to the system is a text file in CONLL-U format (Zeman and Haji¢ 2018c). Each
token is transformed to one-hot vector where one indicates the column dedicated for
its part-of-speech tag. Each sentence’s number of tokens is normalized to an arbitrary
value. All experiments and evaluation in this paper are performed with sentences
of 50 tokens size, but this is a configurable parameter of system. If the sentence is
longer than this value, then it’s divided to 50 tokens chunks — if it’s shorter then there
are added padding rows. Additionally, every vector in sentence as a last value has
assigned whether is a sentence’s token or padding row.

4.2. Neural Network Architecture

System’s architecture is based on bidirectional recurrent GRU (Cho et al. 2014)
network with dropout layer. All experiments and evaluation process was conducted
with 400 GRU hidden units, although the number of it is configurable parameter of
the system. Drewutnia was implemented in Python, using the Keras? package with
TensorFlow® backend. Its schematic depiction is shown in Fig. 2.

As an input serves set of matrixes representing sentences of normalized length with
one-hot encoded part-of-speech tags (see 4.1). As an output there are two layer with
sigmoid activation. One is for predicting id of token’s parents and the other one is for
relation label (see 4.3).

4.3. Predicted Output

Both output layers store the information in one-hot encoded vectors. Labels are
encoded similarly as input layer of part-of-speech tags — every possible tag has own
column and the last column serves as indicator of padding. Parents values are straight-
forward — they are indicating column, whose index is the index of token’s parent in

Zhttps://keras.io/
3https://www.tensorflow.org/

44 Beata Skuczyriska

input: | (None, 50, 19)

POS: InputLayer
output: | (None, 50, 19)

input: | (None, 50, 19)

bidirectional 1(gru_1): Bidirectional(GRU)
output: | (None, 50, 400)

input: | (None, 50, 400)
output: | (None, 50, 400)

A

input: | (None, 50, 400) . input: | (None, 50, 400)
parents: Dense relations: Dense
output: | (None, 50, 52) output: | (None, 50, 65)

dropout_1: Dropout

Figure 2: Schematic depiction of Drewutnia’s neural network architecture

sentence. Parents output matrix has two extra columns. The first one is reserved for
root as its parent is always indicating zero which is out of sentence. The second bonus
column is for padding.

4.4. Postprocessing

During this phase predicted output is translated to CONLL-U format and there are
fixed incorrectly builded trees. After removing padding and transforming sentences
to their original length, there is checked whether they have exactly one root. If has
none, then the output matrix of neural network is checked again to see which token
had the biggest score in column indicating root. If there is more than one root token,
then it is checked which of them had the biggest score in root column. Rest of tokens
that had root label are given chosen root word as a parent. Also, the tokens without
assigned parent are treated the same as rejected roots.

Another step of postprocessing is removing cycles from predicted tree. It is performed
with using simple function over mapped vertices of dependency graph. If the cycle is
detected, then parents of all tokens (except root) are set on root.

Drewutnia: a Frugal Approach to Dependency Parsing 45

Table 1: Results of evaluating different configurations of the system

Number Removing cycles LAS

of epochs in postprocessing F; score
30 NO 48.02
30 YES 29.54
50 NO 31.06
50 YES 17.86

5. Experiments and Evaluation

Evaluated test set contained 2219 sentences (see Section 3). The evaluation was
performed with usage of an adapted version of the CoNLL 2018 Shared Task script
(Zeman and Haji¢ 2018a). The main introduced change was not breaking evaluation
in case if:

1. sentence was having multiple roots,
2. token’s parent was pointing outside of the tree,

3. there was cycle in tree.

Instead, those issues were counted and provided as supplementary evaluation statistics.
Additionally, token who was found to be in 2nd situation was excluded from further
processing.

In Table 1 are presented results of evaluation. LAS metric counts percentage of the
words who were ascribed both good parent id and appropriate relation label. Details
could be found in (Zeman and Haji¢ 2018a).

6. Discussion

Results presented in Table 1 are far below the state-of-the-art systems. Yet, considering
that the input for the model were only part-of-speech tags, LAS F; score on level
of 48.02 seems not a bad achievement. The approach realized in this system was
purely exploration and experimental. Most of the contemporary Natural Language
Processing tools based on neural networks makes use of word embeddings (see e.g.
Liu et al. 2017) for question-answering system or (Guzman et al. 2017) in machine
translation problem). Although they generally improve performance, usually the
models are quite space consuming and therefore difficult to adapt to devices with

46 Beata Skuczyriska

limited memory space. Comparing to that Drewutnia’s model was only around 3 MB
size.

The described system shows that dependency parsing restrictions is challenging for
simple seq-to-seq model. Limiting number of roots to one and preventing showing
of cycles in sentences are bounds that are hard to incorporate in neural model. The
method of dealing with cycles described in Subsection 4.4 significantly decreases the
performance of the system.

7. Conclusions

In this paper was presented experimental frugal approach to dependency parsing of
Polish sentences. GRU neural network with only part-of-speech tags on input proved
to be insufficient for such a complex task. Drewutnia need to undergo significant
improvements in order to become competitive for the state-of-art systems.

References

Bohnet B. (2010). Very High Accuracy and Fast Dependency Parsing is not a Contradic-
tion. [in:] Proceedings of 23rd International Conference on Computational Linguistics
(COLING 2010), vol. 2, pp. 89-97. Association for Computational Linguistics.

Cho K., van Merrienboer B., Giilcehre C., Bougares E, Schwenk H. and Bengio Y.
(2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. ,,CoRR”, abs/1406.1078.

Guzman E, Joty S., Marquez L. and Nakov P (2017). Machine Translation Evaluation
with Neural Networks. ,,Computer Speech & Language”, 45, pp. 180-200.

Liu X., Shen Y., Duh K. and Gao J. (2017). Stochastic Answer Networks for Machine
Reading Comprehension. ,,CoRR”, abs/1712.03556.

Nivre J., Hall J., Nilsson J., Chanev A., Eryigit G., Kiibler S., Marinov S. and Marsi
E. (2007). MaltParser: A Language-independent System for Data-driven Dependency
Parsing. ,Natural Language Engineering”, 13(2), pp. 95-135.

Ogrodniczuk M. and Kobylinski L. (2018). PolEval 2018 Site. http://poleval.pl/
tasks/. Last accessed 30 Sept 2018.

http://poleval.pl/tasks/
http://poleval.pl/tasks/

Semi-Supervised Neural System for Tagging, Parsing and Lemmatization. Addendum 47

Wroblewska A. (2014). Polish Dependency Parser Trained on an Automatically Induced
Dependency Bank. Ph.D. dissertation, Institute of Computer Science, Polish Academy
of Sciences.

Wréblewska A. (2018). PDBparser Page. http://zil.ipipan.waw.pl/PDB/
PDBparser. Last accessed 30 Sept 2018.

Zeman D. and Haji¢ J. (2018a). CoNLL 2018 Shared Task Evaluation Site. http://
universaldependencies.org/conll18/evaluation.html. Last accessed 30 Sept
2018.

Zeman D. and Hajic J., eds. (2018b). Proceedings of the CoNLL 2018 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies. Association for Compu-
tational Linguistics.

Zeman D. and Haji¢ J. (2018c). Universal Dependencies CONLL-U Page. http:
//universaldependencies.org/format.html. Last accessed 30 Sept 2018.

http://zil.ipipan.waw.pl/PDB/PDBparser
http://zil.ipipan.waw.pl/PDB/PDBparser
http://universaldependencies.org/conll18/evaluation.html
http://universaldependencies.org/conll18/evaluation.html
http://universaldependencies.org/format.html
http://universaldependencies.org/format.html

Semi-Supervised Neural System for Tagging,
Parsing and Lemmatization. Addendum

Piotr Rybak and Alina Wréblewska (Institute of Computer Science, Polish
Academy of Sciences)

This addendum to the paper (Rybak and Wréblewska 2018) is devoted to the winner
of the 1A shared task of the PolEval 2018 competition (Ogrodniczuk and Kobylinski
2018). The main paper presents the system COMBO,! which successfully participated
in the CoNLL 2018 shared task on Multilingual Parsing from Raw Text to Universal
Dependencies (Zeman et al. 2018). The current addendum describes some COMBO’s
extensions: adding mechanisms to predicting enhanced graphs and semantic labels.

The COMBO system used in the task 1A consists of jointly trained tagger, lemmatizer,
and dependency parser which are based on the features extracted by the bidirectional
long-short term memory network (biLSTM) taking the concatenation of external word
embeddings and internal character-based word embeddings as input. The tagger
takes the extracted features and predicts universal part-of-speech tags, Polish-specific
tags and morphological features using three separate fully connected neural networks
with one hidden layer. The lemmatizer uses a dilated convolutional neural network to
predict lemmas based on characters of corresponding words and the features extracted
by the biLSTM encoder. As a scoring function, the graph-based dependency parser
uses simple dot product of the vector representations of a dependent and its governor.
These representations are output by two single fully connected layers which take
the feature vectors extracted by the biLSTM encoder as input.

In the task 1B, the extended version of COMBO predicts enhanced graphs and semantic
roles of some dependents. The enhanced graphs are predicted in the similar way
as the dependency trees in the task 1A. First, the adjacency matrix is calculated
for an enhanced graph, i.e. the embeddings are computed for the heads and their
dependents based on the features extracted by the biLSTM encoder and dot product
is used as a scoring function. The only difference is usage of the sigmoid activation

'https://github.com/360er0/COMBO

https://github.com/360er0/COMBO

50 Piotr Rybak and Alina Wréblewska

function instead of soft-max. The sigmoid activation function allows the network to
predict many heads for a given dependent. Next, we calculate another set of head and
dependent embeddings. For each pair of a head and its dependent we concatenate
their embeddings and use a fully connected neural network with one hidden layer to
predict the label of such hypothetical arc. In this case, the soft-max activation function
is used to force the network to predict only one label for each arc. Finally, the vector
of probabilities of various labels is multiplied by the probability of the given arc taken
from the first part of the model. Both parts are jointly optimised using cross-entropy
loss.

The semantic label are predicted in a way that resembles the prediction of part-
of-speech tags. The system takes the features extracted by the biLSTM encoder as
input and predicts semantic roles for some dependents using a fully connected neural
networks with one hidden layer.

COMBO is trained on data provided for the purpose of the PolEval dependency shared
task (Wréblewska 2018).% It also uses the pre-trained word embeddings.3 COMBO
is the winner of the 1A shared task of the PolEval 2018 competition. It achieves
the highest F;-scores in all categories. In the task 1B, COMBO outperforms other
systems in predicting semantic labels. In predicting enhanced graphs, it performs
only slightly worse than the best IMS system.

Acknowledgements

The research presented in this paper was founded by SONATA 8 grant no
2014/15/D/HS2/03486 from the National Science Centre Poland and by the Polish
Ministry of Science and Higher Education as part of the investment in the CLARIN-PL
research infrastructure.

References
Ogrodniczuk M. and Kobylinski L., eds. (2018). Proceedings of the PolEval 2018
Workshop. Institute of Computer Science, Polish Academy of Sciences.

Rybak P and Wroblewska A. (2018). Semi-Supervised Neural System for Tagging,
Parsing and Lematization. [in:] Proceedings of the CoNLL 2018 Shared Task: Mul-

2http://git.nlp.ipipan.waw.pl/alina/PDBUD
Shttp://mozart.ipipan.waw.pl/~axw/models

http://git.nlp.ipipan.waw.pl/alina/PDBUD
http://mozart.ipipan.waw.pl/~axw/models

Results of the PolEval 2018 Shared Task 2: Named Entity Recognition 51

tilingual Parsing from Raw Text to Universal Dependencies, s.45-54. Association for
Computational Linguistics.

Wréblewska A. (2018). Extended and Enhanced Polish Dependency Bank in Universal
Dependencies Format. [in:] Proceedings of Universal Dependencies Workshop 2018
(UDW 2018).

Zeman D., Haji¢ J., Popel M., Potthast M., Straka M., Ginter E, Nivre J. and Petrov
S. (2018). CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal
Dependencies. [in:] Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pp. 1-21. Association for Computational
Linguistics.

Results of the PolEval 2018 Shared Task 2:
Named Entity Recognition

Aleksander Wawer, Estera Matek (Institute of Computer Science,
Polish Academy of Sciences)

1. Introduction

PolEval is a SemEval-inspired evaluation campaign for natural language processing
tools for Polish. Submitted tools compete against one another within certain tasks,
using available data and are evaluated according to pre-established procedures. This
article describes the results of Named Entity Recognition task.

Named entities (NE) are phrases that contain the names of things, such as persons, or-
ganizations and locations. Named Entity Recognition (NER) task is to label sequences
of words in a text with appropriate named entity markup. Named entity recognition
is an important task of information extraction systems.

For example the sentence:
[PER Ban Ki-moon] przebywat z wizyta w [LOC Gdansku].

contains two named entities: Ban Ki-moon is a person [PER], Gdansk is a location
[LOC].

Entity lemmatization is not a part of this task.

There has been a lot of work on named entity recognition, especially for English. The
Message Understanding Conferences (MUC), CoNLL-2002 and CoNLL-2003 (Tjong
Kim Sang and De Meulder 2003) have offered the opportunity to evaluate systems
for English on the same data in a competition. They have also produced schemes for
entity annotation. The PolEval Named Entity Recognition task aims to bridge this gap
and provide a reference data set for the Polish language.

54 Aleksander Wawer, Estera Matek

Annotating conventions of both training and testing data follow the National Corpus
of Polish (NKJP). For a discussion of named entity annotation in NKJB please refer to
chapter 9 by Przepidrkowski et al. (2012). Please note that NKJP supports nested entity
annotation and multiple sub-categories (three sub-types of persons, five sub-types of
places, see Figure 9.2, p. 133).

2. Data

2.1. Training Data

As the training data set, we encouraged participants to use the manually annotated
1-million word subcorpus of the National Corpus of Polish. It is available from
http://clip.ipipan.waw.pl/NationalCorpusOfPolish.

2.2. Evaluation Data

In order to test the submitted systems, we have prepared a corpus with manual named
entity annotations. This data set has not been publicly released before the PolEval
event. Texts in this corpus originate in the Polish coreference corpus.

The corpus is composed of 1828 documents with different length, extracted randomly
from National Corpus of Polish (NKJP).

The annotation process was conducted according to the ontology from National Corpus
of Polish manual. The ontology precisely describes most types of Named Entities and
assigns them to certain categories. However, there are cases of Named Entities in
corpus that are not covered by instructions. The reasons are various — specific Named
Entity’s context, difficulties in interpretation, lack of one decision about specific Named
Entity type annotation in ontology (possible two ways of annotation), multiple nested
entities, etc.

In those cases annotators’ strategy was to choose the best possible annotation for each
Named Entity by analogy to the ontology instructions. It was also helpful to check
how certain Named Entity is annotated in 1-million word subcorpus of the National
Corpus of Polish (described in Section 2.1) or check if certain Named Entity (or a
similar one) appears in examples in the annotation manual.

Below we include some examples of Named Entities that were difficult to annotate.

http://clip.ipipan.waw.pl/NationalCorpusOfPolish

Results of the PolEval 2018 Shared Task 2: Named Entity Recognition 55

Uncommon nicknames:

Janusz i Nieznajomy znaja dokladne daty (...)
A teraz Spiewala to Urszula na “Przystanku Woodstock”

Uncommon way of writing of a particular Named Entity:
#PoselAleksanderKwasniewski

Metaphorical use of a Named Entity:

Kazdy ma swoje Kilimandzaro.

Named Entity that does not refer directly to any of possible category:
Otrzymat tytut Filantropa Roku 2001 oraz statuetke Ferdynanda. Co
wytrwalsi mogli jeszcze bezposrednio po balu okraza¢, skaczac na jednej
nodze, fontanne przy ratuszu z Jackiem.

Named Entities in languages different than Polish or English:

Mistrzem Argentyny (...) zostal klub San Lorenzo de Almagro Buenos

Aires

3. Solutions

This section briefly describes submitted solutions. The list is consists of descriptions
provided by authors of the competing systems. Therefore, we do not list systems
where such descriptions were not provided.

3.1. KNER

KNER utilizes recurrent and convolutional neural networks combined with conditional
random fields. The features are provided by the morphological tagger KRNNT (Wrdbel
2017). Word embeddings are initialized with embeddings trained on full National
Corpus of Polish (Przepidorkowski et al. 2012, Mykowiecka et al. 2017). Nested entities
are addressed by two approaches. Sent testing data solution contained a mistake
causing 12 percentage points drop of F;.

56 Aleksander Wawer, Estera Matek

3.2. BiLSTM-CRF

The specific distribution of entities in the National Corpus of Polish encouraged us
to handle the problem in a following way: to train separate, classic BILSTM-CRF
models (Lample et al. 2016) per (almost) non-overlaping entity groups, that is groups
guaranteeing it is at least highly unlikely entities within will collide. Whenever
possible, groups consisted of neighboring entities in order to exploit the potential of
linear CRF chain. The best-performing solution we tested relied on stacked GloVe
and Contextual String Embeddigns. The later were recently proposed by Akbik et al.
(2018), who showed that the internal states of a trained character language model can
be used to create word embeddings able to outperform the previous state-of-the-art in
sequence labeling tasks. Forward and backward character-level language models were
trained on 1B words corpus of Polish composed in one third of respectively subsamples
from: Polish Wikipedia, PolEval’s language modeling task and Polish Common Crawl.
Subsamples of Wikipedia and PolEval tasks were selected randomly, whereas from
Common Crawl those sentences were selected, whose were characterized with the
highest similarity to PolEval sample, as expressed with cross-entropy (Moore and Lewis
2010). GloVe embeddings were trained on a very large, freely available Common
Crawl-based Web corpus of Polish. After postprocessing, the corpus consisted of
27 354 330 800 tokens, from which 119 330 367 were unique. Embeddings were
generated for all the tokens present in PolEval task’s corpora. The final LSTM-CRF
sequence labelling models were trained with one bidirectional LSTM layer and 512
hidden states on 300-dimensional GloVe embeddings, as well as embeddings from
forward and backward LMs with 2048 hidden states.

3.3. Liner2

Liner2! (Marciriczuk et al. 2013) is an open-source generic framework for sequence
text labeling. It has been already used to train a state-of-the-art models for named
entity recognition following the KPWr guidelines (Marcinczuk et al. 2016), including
mention boundary detection, coarse-grained categorization (9 types) and fine-grained
categorization (82 types) (Marcinczuk et al. 2017). It was used also to other Informa-
tion Extraction tasks like the recognition of temporal expressions (Kocon and Mar-
cinczuk 2017) and events (Kocon and Marcinczuk 2016). Liner2 uses Conditional
Random Fields (Sutton and McCallum 2007) as a statistical model and a rich space
of features of different types, including: orthographic, structural, morphological,
lexicon-based, wordnet-based and compound features. Liner2 exploits language and

'https://github.com/CLARIN-PL/Liner2

https://github.com/CLARIN-PL/Liner2

Results of the PolEval 2018 Shared Task 2: Named Entity Recognition 57

domain knowledge in a form of external structured resources, i.e. lexicon of named
entities, lexicon of named entity triggers, wordnet and morphological dictionary.

3.4. PolDeepNer

PolDeepNer is based on an ensemble of neural networks. The first one is a bidirectional
LSTM with sequential conditional random layer above it, similarly as it was presented
by Lample et al. (2016). The second one utilizes bidirectional GRU layer (Cho
et al. 2014), also together with CRF layer. Both LSTM and GRU are units of the
recurrent neural network (RNN), where in case of bidirectional RNN, context of
the word is captured through past and future words (Sahu and Anand 2016). The
neural networks are fed with three different word embedding models generated with
fastText (Bojanowski et al. 2017) from the following corpora: Common Crawl for
Polish?, Polish Wikipedia® and KGR10%.

3.5. simple_ner

This named entity recognition system created for PolEval competition uses Bidirec-
tional GRU neural network, trained on 1-million word subcorpus from the National
Corpus of Polish, with 300 dimensions Polish word embeddings and binary features
as an input and flat entities as an output.

Three types of binary features were used to describe if each word starts with a capital
letter, has a dot or a number inside. Two versions of processed output were created
to achieve flat structure. In the first type all overlapping labels in nested entity were
modified by concatenating it into one label. In the second one, only the most specific
label in the set were used which resulted in removal of all nesting.

3.6. Pg. LSTM-CRF w. C. S. E.

Full name of the submitted system is “Per group LSTM-CRF with Contextual String
Embeddings”.

The specific distribution of entities in the National Corpus of Polish encouraged us
to handle the problem in a following way: to train separate, classic BILSTM-CRF
models (Lample et al. 2016) per (almost) non-overlaping entity groups, that is groups
guaranteeing it is at least highly unlikely entities within will collide. Whenever

*http://commoncrawl.org/
*https://www.wikipedia.org/
“https://clarin-pl.eu/dspace/handle/11321/600

http://commoncrawl.org/
https://www.wikipedia.org/
https://clarin-pl.eu/dspace/handle/11321/600

58 Aleksander Wawer, Estera Matek

possible, groups consisted of neighboring entities in order to exploit the potential of
linear CRF chain. The best-performing solution we tested relied on stacked GloVe
and Contextual String Embeddigns. The later were recently proposed by Akbik et al.
(2018), who showed that the internal states of a trained character language model can
be used to create word embeddings able to outperform the previous state-of-the-art in
sequence labeling tasks. Forward and backward character-level language models were
trained on 1B words corpus of Polish composed in one third of respectively subsamples
from: Polish Wikipedia, PolEval’s language modeling task and Polish Common Crawl.
Subsamples of Wikipedia and PolEval tasks were selected randomly, whereas from
Common Crawl those sentences were selected, whose were characterized with the
highest similarity to PolEval sample, as expressed with cross-entropy (Moore and Lewis
2010). GloVe embeddings were trained on a very large, freely available Common
Crawl-based Web corpus of Polish. After postprocessing, the corpus consisted of
27 354 330 800 tokens, from which 119 330 367 were unique. Embeddings were
generated for all the tokens present in PolEval task’s corpora. The final LSTM-CRF
sequence labelling models were trained with one bidirectional LSTM layer and 512
hidden states on 300-dimensional GloVe embeddings, as well as embeddings from
forward and backward L.Ms with 2048 hidden states.

3.7. VIA NER

The proposed solution is a bidirectional LSTM-CRF neural network inspired by pre-
vious work in this area (Ma and Hovy 2016). As input to the network, the authors
used externally trained sub-word vectors derived from a Common Crawl dump of
Polish texts (Grave et al. 2018), convolutions of character embeddings and selected
morphosyntactic features of word tokens obtained from the APT tagger of Polish
(Pezik and Laskowski 2017). The architecture was implemented in the Tensorflow
framework.

4. Evaluation Procedure

We intend to evaluate systems according to two general approaches:
— Exact match of entities: in order to count as a true positive, offsets of detected
vs golden entities need to be the same.

— Entity overlap: in order to count as a true positive, offsets of detected vs golden
entities need to have a common range, such as a word or more words.

Results of the PolEval 2018 Shared Task 2: Named Entity Recognition 59

In both cases, in order to count as a true positive, detected category of an entity need
to be the same as the golden one.

Final ranking of participating systems was based on a combined measure of the exact
match and entity overlap.

The metrics we used for this task is micro F;.

5. Results

None of the systems has been declared as using other named entity annotated corpus
than the official 1M NKJB therefore we present the competing systems in just one
table.

Table 1 below shows results of evaluation. It contains system names, initials of
submitting authors, micro average F, scores computed for overlap and exact matches.
We computed final scores as weighted means:

0.8 xoverlap + 0.2 xexact

The reason for this are (1) combining both measures while (2) giving strong premium
for overlap matches. Hopefully, both overlap and exact matches produce very similar
orderings of competing systems, even without using combined weighted scores as in
the column Final.

Table 1: Final results of PolEval 2018 NER competition

System Author Exact Overlap Final
Pg. LSTM-CRF w. C. S.E. [L.B.] 0.826 0.877 0.866
PolDeepNer [M. M.] 0.822 0.859 0.851
Liner2 [M. M.] 0.778 0.818 0.810
OPI 73 [S.D.] 0.749 0.805 0.793
joint [M.L.] 0.748 0.789 0.780
disjoint [M.L.] 0.747 0.788 0.779
via_ner [P P] 0.692 0.773 0.756
kner sep [K. W] 0.7 0.742 0.733
Poleval2k18 [M.Z.] 0.623 0.743 0.719
KNER [K.W.] 0.681 0.719 0.711
simple_ner [P Z.] 0.569 0.653 0.636

60 Aleksander Wawer, Estera Matek

The best solution turned to be Pg. LSTM-CRF w. C. S. E. (“Per group LSTM-CRF
with Contextual String Embeddings”) from Applica.Al. It was followed closely by two
solutions from Wroctaw University of Technology: PolDeepNer and Liner2.

6. Conclusions

Altogether, in the NER task in 2018 we had eleven competing systems, submitted by
nine teams or researchers.

Most of the solutions were based on deep learning paradigm, especially recurrent
neural networks. Some exceptions include Liner2, based on an older solution of
Conditional Random Fields (CRF).

The systems were fine-tuned to various degree, and that was reflected in achieved
scores. We had relatively straightforward solutions such as simple_ner, as well as
heavily tuned and complex ones such as the winning Pg. LSTM-CRF w. C. S. E. (“Per
group LSTM-CRF with Contextual String Embeddings”). The notion of fine-tuning
involves in this case also transfer learning on huge resources, as was the case with
the winning solution (glove embeddings trained on Common Crawl). The solutions
based on recurrent neural networks used either softmax or conditional random fields
for the inference layer.

The results are very good, but the performance of named entity extraction in the
English language is still higher. Current state-of-the-art systems reach F; scores above
0.9. For example Lample et al. (2016) report F; at 0.9094, Chiu and Nichols (2015)
report F; at 0.9162. The difference in performance between the best Polish and
English systems can be very likely attributed to much simpler taxonomy of the CONLL-
2003 data set used in the English language. It consists only of one level PLO markup
(Person, Location, Organization).

References

Akbik A., Blythe D. and Vollgraf R. (2018). Contextual String Embeddings for Se-
quence Labeling. [in:] COLING 2018, 27th International Conference on Computational
Linguistics, pp. 1638-1649.

Bojanowski B, Grave E., Joulin A. and Mikolov T. (2017). Enriching Word Vectors with
Subword Information. , Transactions of the Association for Computational Linguistics”,
5, pp- 135-146.

Results of the PolEval 2018 Shared Task 2: Named Entity Recognition 61

Chiu J. P C. and Nichols E. (2015). Named Entity Recognition with Bidirectional
LSTM-CNNs. ,,CoRR”, abs/1511.08308.

Cho K., van Merrienboer B., Bahdanau D. and Bengio Y. (2014). On the Properties of
Neural Machine Translation: Encoder-Decoder Approaches. [in:] Proceedings of the 8th
Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8), 2014.

Grave E., Bojanowski P, Gupta B, Joulin A. and Mikolov T. (2018). Learning Word
Vectors for 157 Languages. [in:] Calzolari N., Choukri K., Cieri C., Declerck T., Goggi
S., Hasida K., Isahara H., Maegaard B., Mariani J., Mazo H., Moreno A., Odijk J.,
Piperidis S. and Tokunaga T. (eds.), Proceedings of the 11th International Conference on
Language Resources and Evaluation (LREC 2018), pp. 3483-3487. European Language
Resources Association.

Kocon J. and Marcificzuk M. (2016). Generating of Events Dictionaries from Polish
WordNet for the Recognition of Events in Polish Documents, Lecture Notes in Computer
Science vol. 9924, pp. 12-19. Springer International Publishing, Cham.

Kocon J. and Marcinczuk M. (2017). Supervised Approach to Recognise Polish Temporal
Expressions and Rule-based Interpretation of Timexes. ,Natural Language Engineering”,
23(3), pp. 385-418.

Lample G., Ballesteros M., Subramanian S., Kawakami K. and Dyer C. (2016). Neural
Architectures for Named Entity Recognition. ,arXiv:1603.01360”.

Ma X. and Hovy E. (2016). End-to-end Sequence Labeling via Bi-directional LSTM-
CNNS-CRF. ,arXiv:1603.01354”.

Marciniczuk M., Kocon J. and Janicki M. (2013). Liner2 — a Customizable Framework
for Proper Names Recognition for Polish. [in:] Bembenik R., Skonieczny L., Rybinski
H., Kryszkiewicz M. and Niezgodka M. (eds.), Intelligent Tools for Building a Scientific
Information Platform, pp.231-253.

Marcinczuk M., Oleksy M. and Dziob A. (2016). KPWr Annotation Guidelines —
Named Entities. CLARIN-PL digital repository.

Marcinczuk M., Kocon J. and Oleksy M. (2017). Liner2 — a Generic Framework for
Named Entity Recognition. [in:] Erjavec T., Piskorski J., Pivovarova L., Snajder J.,
Steinberger J. and Yangarber R. (eds.), Proceedings of the 6th Workshop on Balto-
Slavic Natural Language Processing (BSNLP@EACL 2017), pp.86-91. Association for
Computational Linguistics.

62 Aleksander Wawer, Estera Matek

Moore R. C. and Lewis W. (2010). Intelligent Selection of Language Model Training Data.
[in:] Proceedings of the ACL 2010 Conference Short Papers, ACLShort '10, pp. 220-224.
Association for Computational Linguistics.

Mykowiecka A., Marciniak M. and Rychlik P (2017). Testing Word Embeddings for
Polish. ,,Cognitive Studies / Etudes Cognitives”, 17, pp. 1-19.

Przepidrkowski A., Barikko M., Gorski R. L. and Lewandowska-Tomaszczyk B., eds.
(2012). Narodowy Korpus Jezgyka Polskiego. Wydawnictwo Naukowe PWN, Warsaw.

Pezik P and Laskowski S. (2017). Evaluating an Averaged Perceptron Morphosyntactic
Tagger for Polish. [in:] Human Language Technologies as a Challenge for Computer
Science and Linguistics, pp. 372-376, Poznan.

Sahu S. and Anand A. (2016). Recurrent Neural Network Models for Disease Name
Recognition Using Domain Invariant Features. [in:] Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp- 2216-2225. Association for Computational Linguistics.

Sutton C. and McCallum A. (2007). An Introduction to Conditional Random Fields for
Relational Learning. [in:] Getoor L. and Taskar B. (eds.), Introduction to Statistical
Relational Learning. MIT Press.

Tjong Kim Sang E. E and De Meulder E (2003). Introduction to the CoNLL-2003
Shared Task: Language-independent Named Entity Recognition. [in:] Proceedings of the
7th Conference on Natural Language Learning at HLT-NAACL 2003 - Volume 4 (CONLL
’03), pp. 142-147. Association for Computational Linguistics.

Wrébel K. (2017). KRNNT: Polish Recurrent Neural Network Tagger. [in:] Vetulani
Z. and Paroubek P (eds.), Proceedings of the 8th Language & Technology Conference:
Human Language Technologies as a Challenge for Computer Science and Linguistics,
pp- 386-391. Fundacja Uniwersytetu im. Adama Mickiewicza w Poznaniu.

Approaching Nested Named Entity Recognition
with Parallel LSTM-CRFs

Lukasz Borchmann, Andrzej Gretkowski, Filip Gralinski (APPLICA.AI)

Abstract

We present the winning system of this year’s PolEval nested named entity competition,
as well as the justification of handling the particular problem with multiple models
rather than relying on dedicated architectures. The description of working out the
final solution (parallel LSTM-CRFs utilizing GloVe and Contextual Word Embeddings)
is preceded with information regarding recent advances in flat and nested named
entity recognition. Significantly, all the tested solutions were developed on the basis of
open source implementations, particularly Flair framework, LM-LSTM-CRE Layered-
LSTM-CRF and Vowpal Wabbit.

Keywords

nested named entity, named entity recognition, LSTM-CRE, contextual word embed-
dings, Polish NER, GloVe embeddings

1. Introduction

Named entity recognition (or entity identification, entity chunking, entity extraction)
is a task of locating and classifying spans of text associated with real-world objects,
such as person names, organizations and locations, as well as with abstract temporal
and numerical expressions (eg. dates).

64 Lukasz Borchmann, Andrzej Gretkowski, Filip Gralinski

1.1. Flat Named Entity Recognition

As Young et al. (2017) summarize, after decades of machine learning approaches
utilizing shallow models trained on high dimensional and sparse features,! came time of
neural networks based on dense vector representations. It is also the case for named
entity recognition systems, where those relying on hand-crafted features and domain-
specific resources can be outperformed with simple deep learning frameworks.?

Many modern and successful NER solutions follow Huang et al. (2015) and Lample
et al. (2016) approaching task with bidirectional LSTM-CRF architecture, which
proved to be a strong candidate for structured prediction problems.

-
0 0 e——> o0 < i
CRF layer ,{
2a > 2a 2a
-
.

backward
LSTM

__________________ forward
LST™M

Co mysli Pan Cogito

BI-LSTM layer =

Input layer

Figure 1: BiLSTM-CRF architecture (Huang et al. 2015, Lample et al. 2016)

Table 1 presents the results of the selected LSTM-CRF-based solutions in the CoNLL
2003 NER task. Liu et al. (2018) showed that LSTM-CRF architecture can be empow-
ered by training a character-level language model at the same time, in addition to
the sequence labeling model. Recent approaches by Peters et al. (2018) and Akbik
et al. (2018) use embeddings obtained from internal states of deep language models
pre-trained on a large text corpus. These are expected to capture context-dependent
word semantics.

A common approach is to stack conceptually different embeddings, eg. by concatenat-
ing LM’s embeddings with count-based approaches of obtaining vector representations

ICf. eg. (Nadeau and Sekine 2007) for a review of pre-neural solutions.
2There are, however, also some attempts to incorporate domain-specific knowledge, eg. by injecting
it into word embeddings (Celikyilmaz et al. 2015, Pandey et al. 2017).

Approaching Nested Named Entity Recognition with Parallel LSTM-CRFs 65

Table 1: Results of selected LSTM-CRF-based solutions in the CoNLL 2003 NER task

Method Span F,
Contextual string embeddings (Akbik et al. 2018) 93.09
Deep contextualized word representations (Peters et al. 2018) 92.22
Task-aware neural language model (Liu et al. 2018) 91.71
Classic LSTM-CRF (Lample et al. 2016) 90.94

for words, such as GloVe proposed by Pennington et al. (2014). According to the
distributional hypothesis, difference of meaning correlates with difference of distribution
(Harris 1954), that is words sharing context tent to share similar meanings, which is
often perceived as theoretical justification of the former representations.

The current state-of-the-art was established by Akbik et al. (2018) with contextu-
alized string embeddings stacked with GloVe embeddings for English and fastText
embeddings for German language (Bojanowski et al. 2017).

1.2. Nested Entity Identification

The methods described above receive particular attention of researchers and are the
basis of related nested named entity recognition systems, where it is expected that
named entities can overlap and contain other named entities. Figure 2 presents an
example of such coming from the National Corpus of Polish (Przepiérkowski et al.
2012), namely street name (here classified as geogName), consisting of a person name
(persName), containing forename and surname.

persName
I
r N
ul . kardynata Stefana Wyszyriskiego
L J
RS
geogName

Figure 2: Example of nested named entity from the National Corpus of Polish (ul. kardynata
Stefana Wyszyriskiego *Cardinal Stefan Wyszynski Street’)

These were proposed to be handled in multiple ways, whereas many of them rely on
an old paradigm of handcrafted features, such as cascaded CRF model, constituency

66 Lukasz Borchmann, Andrzej Gretkowski, Filip Gralinski

parser with constituents for each named entity or mention hypergraph model (Katiyar
and Cardie 2018). Recently however, the problem was successfully addressed with
neural architectures, by dynamically stacking additional flat CRF layers in LSTM-
CRF model (Ju et al. 2018) and learning the entity hypergraph structure (Katiyar
and Cardie 2018).

1.3. PolEval Entity Extraction Task

PolEval is an example of nested named entity recognition tasks. Participants were
asked to train their models on 1M subcorpus of the National Corpus of Polish, consist-
ing of around 87k entities with 14 distinct types in 86k sentences.

Table 2: Entity types and their respective frequencies in 1M subcorpus of the National Corpus
of Polish

Entity type Frequency (in thousands)
persName 20.4
persName.forename 13.2
persName.surname 13.0
orgName 11.8
placeName.settlement 8.4
placeName.country 8.1
geogName 4.7
date 4.5
persName.addName 1.0
placeName.region 0.9
time 0.6
placeName.region 0.4
placeName.district 0.3
placeName.bloc 0.1
(in total) 87.4

Figure 3 presents overlaps of named entities within 1M subcorpus of the National
Corpus of Polish. Values are calculated as frequency of both labels overlaps to the fre-
quency of vertical label, eg. persName.forename overlaps with persName whenever the
first one is present, but persName overlaps forename in only 64% of cases it appeared
in the training set (in this case it reflects the fact that all the persName.forename are
nested in corresponding persName but only some of the persNames contain forename).

In addition to nested named entities, the mentioned dataset contains a marginal
number of non-continuous name entities, such as in gmina miejska Gdynia ’Gdynia

Approaching Nested Named Entity Recognition with Parallel LSTM-CRFs 67

Municipality’ where the single entity is formed from the first and the last words, with
the middle one omitted.

These were intentionally ignored. In general, the tested solutions were selected with
the assumption that the final test set will share a similar distribution of entity types,
overlapping and related problems.

1.0
date- 1
geogName - .1 .02 .02 .01 .02 .07 .08 .13 .04
orgName - .06 .11 .01 .02 .24 .07 .05 .06 .12 0.8
persName - 08 o1 ESEHIEN 03
persName.addName - .05
persName.forename - 03 [0.6
persName.surname - .06 02
placeName -
placeName.bloc - .06 -0.4
placeName.country - .05 .01 .02
placeName.district -
placeName.region - .02 47 03 -0.2
placeName.settlement - .07 .09 02 .01 02 .3
time - .05
1 1 I I I I I I I I I I I I - 0.0
E VUV VOV OOV a -b‘ c 4&‘ Q
T EEEEEEELRSEL g E
TMOO OO OCEOCOCRSHE DS
Zzzzcc=zg3Ll2Y S
2oV S 050 c 0 o2
Sca%ocany -0 8
9°2rc228SdPET
o] GE) ag EGgam W
EEG vuo == Q
T C > 829 9 E
zz5 a Y uvgeo
n un o = =
§89 B8o°g
o (V)
o o ®
o

Figure 3: Overlaps of named entities within 1M subcorpus of the National Corpus of Polish.
Values calculated as frequency of both labels overlaps to the frequency of vertical label

2. Towards Choosing an Optimal Solution

Subcorpora described in the previous section was divided into new train (80k sen-
tences), dev and tests sets (both ca. 3k sentences), that were used to start an internal
challenge within the local instance of an open source, git-based Gonito.net platform
(Gralinski et al. 2016). Span F; mentioned in the present section is the result of
evaluation on so-created, local test set, calculated with the use of geval tool. After the
official results were published, the submissions described in this paper were uploaded

68 Lukasz Borchmann, Andrzej Gretkowski, Filip Gralinski

to an open instance of Gonito.net platform, where all the readers are encouraged to
compete.’

Most of the solutions rely on training the separate models per (almost) non-overlapping
entity groups, that is groups guaranteeing that individual entities within will not collide
with each other. Whenever possible, groups consisted of neighboring entities in order
to exploit the potential of linear CRF chain. Groups distinguished were (cf. Figure 3
for justification):

— geogName, placeName,

— orgName,

— persName.addName, persName.forename, persName.surname,

— persName,

— placeName.bloc, placeName.region, placeName.country, placeName.district,
— time, date, placeName.settlement.

This approach excludes the possibility of nesting the same type of named entity
by design, ignoring that eg. half of placeName.region objects have a lower-level
placeName.region inside. The problem was intentionally left for further exploiting,
bearing the expected classes’ popularity and limited time in mind.

2.1. Baseline: Search-Based Structured Prediction

As a baseline we decided to rely on the search-based structured prediction, an effective
algorithm for reducing structured prediction problems to classification problems
(Daumé III et al. 2009), implemented in the Vowpal Wabbit machine learning system.*
Training was performed in 3 passes, with copying features from neighboring lines and
search history length set to 6, utilizing the following features:

— token length;

— whether token contains: uppercase letter, lowercase letter, digits, punctuation,
dash, colon, only digits, only uppercase letters, only lowercase letters, only
punctuation;

— if token was found on the predefined list of first names, surnames, towns,
communes, streets, institutions, music bands, geographical names and countries
(sourced from Wikipedia, TERYT database and Rymut’s dictionary (Rymut
1992));

3See: https://gonito.net/challenge/poleval-2018-ner
*https://github.com/JohnLangford/vowpal_wabbit

https://gonito.net/challenge/poleval-2018-ner
https://github.com/JohnLangford/vowpal_wabbit

Approaching Nested Named Entity Recognition with Parallel LSTM-CRFs 69

— character n-grams (ranging from 4 to 6) and distinguished affixes,

— rough representation of the token, eg. Aa+ for Adam, A+ for NASA and 9+#9+
for 20:27;

— effect of analysis with LanguageTool, namely: length of lemma, affixes, lemma,
morphological tags.

The system described above was able to achieve a span F; of 0.82 on test set
({4a1327}°).

2.2. LM-LSTM-CRF

The first neural approach tested was based on LM-LSTM-CRF sequence labeling tool®,
implementing the method proposed by Liu et al. (2018), where a character-level
language model is trained at the same time, in addition to the sequence labeling
model (note that in this method LM is not pre-trained on a large corpus, but trained
only on the task data, which is one of the distinguishing features when compared to
contextual string embeddings (Akbik et al. 2018)).

For the purposes of using the method, GloVe embeddings (Pennington et al. 2014)
were trained on a very large, freely available” Common Crawl-based Web corpus
of Polish (Buck et al. 2014). After basic filtering, tokenization was performed with
toki utility (Radziszewski and Sniatowski 201 1), because it is distributed along with
compatible SRX rules mimicking the standard can be found in the National Corpus of
Polish. After postprocessing, the corpus consisted of 27 354 330 800 tokens, 119 330
367 of which were unique. Embeddings were generated for all the tokens present in
PolEval task’s corpora (symmetric, cased, 300 dimensions, 30 iterations, window size
of 15).

The best-performing models of this type were trained for 100 epochs, with the default
settings (except higher dimension of word embeddings and disabled word embedding
fine tuning), achieving a span F; of 0.87 on our test set, outperforming baseline by 5
percentage points ({f2c8fc}).

2.3. Contextual String Embeddings

Contextual String Embeddings were proposed by Akbik et al. (2018), who showed
that the internal states of a trained character language model can be used to create

SThis is the reference code to a repository stored at Gonito.net. The repository may be also accessed

by going to http://gonito.net/q and entering the code there.
*https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
"http://data.statmt.org/ngrams/raw/

http://gonito.net/q/4a1327816b2039151cdbf10df3787fd503221ddd
http://gonito.net/q/f2c8fca45d1ef1e21a14b4463aee5088b63dc6c7
http://gonito.net/q
https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
http://data.statmt.org/ngrams/raw/

70 Lukasz Borchmann, Andrzej Gretkowski, Filip Gralinski

word embeddings able to outperform the previous state-of-the-art in sequence labeling
tasks. The method was implemented in Flair framework® we used for the purposes of
training the best-performing models.

Forward and backward character-level language models were trained on 1B words
corpus of Polish composed in one third of respectively subsamples from: Polish
Wikipedia, PolEval’s language modeling task (supposedly the National Corpus of
Polish) and Polish Common Crawl. The text was tokenized using the same pipeline as
in the preparation of GloVe embeddings described above. Subsamples of Wikipedia
and PolEval tasks were selected randomly, whereas those sentences were selected
from Common Crawl which were characterized by the highest similarity to PolEval
sample, as expressed with cross-entropy (Moore and Lewis 2010).

We used exactly the same parameters, settings and assumptions as Akbik et al. (2018),
achieving the final perplexity of 2.44 for forward and 2.47 for backward LM.

The final LSTM-CRF sequence labeling models were trained with one bidirectional
LSTM layer and 512 hidden states on 300-dimensional GloVe embeddings (cf. the
previous section), as well as embeddings from forward and backward LMs with 2048
hidden states. No progress in terms of span F; measured on dev set was observed
after 30 epochs which distinguishes the method from LM-LSTM-CRF approach. As
expected, the models outperformed previous neural solution achieving F-score of 0.88
on the internal test set ({82e4d1}). The submitted models, trained with our dev set
included, performed even better, resulting in F-measure about 0.89.

PolEval nested NER task was evaluated in a different manner, combining weighted
measures calculated for overlap and exact matches, giving strong premium for the
former. The official, final score turned out to be 0.866, compared to 0.851 for the
second best and 0.810 for the third.

Code and models accompanying the paper, which can be used to reproduce the results
are publicly available at: https://github.com/applicaai/poleval-2018.

3. Discussion

The described solutions and settings were not the only ones tested, eg. 300-
dimensional fastText embeddings provided by Grave et al. (2018) were considered,
but we found the GloVe ones better suiting the task. Moreover, the Layered-LSTM-
CRF® was examined, but the results achieved were disappointing, when following the
detection order rule proposed by authors, even when contextual string embeddings

Shttps://github.com/zalandoresearch/flair
“https://github.com/meizhiju/layered-bilstm-crf

http://gonito.net/q/82e4d1458d702d52cc0d7217935a66ec2a59e859
https://github.com/applicaai/poleval-2018
https://github.com/zalandoresearch/flair
https://github.com/meizhiju/layered-bilstm-crf

Approaching Nested Named Entity Recognition with Parallel LSTM-CRFs 71

were used. It may be due to the specific character of the attempted dataset, where
given two entity classes it is not known which one will appear in inside and which in
outside layers. Since this approach was not sufficiently tested due to the lack of time,
we are not reporting it in details.

Furthermore, the layered-LSTM inspired method was tested for second-order LSTM-
CRF models whenever it could be beneficial, especially for persName tag, that
should appear outside every, lower-lever classes group (persName.forename, per-
sName.surname, persName.addName). Including information about those had no
impact on the overall performance despite substantially affecting learning speed.

After the predicted answers were sent, LM training continued until no progress was
observed, achieving the final perplexity of 2.41 for the forward and 2.46 for the
backward model. This encouraged us to test how it could affect the overall results.
However, no improvement of sequence labeling model was observed, and the only
change was a steeper learning curve (the same accuracy was achieved after fewer
epochs).

References

Akbik A., Blythe D. and Vollgraf R. (2018). Contextual String Embeddings for Se-
quence Labeling. [in:] COLING 2018, 27th International Conference on Computational
Linguistics, pp. 1638-1649.

Bojanowski P, Grave E., Joulin A. and Mikolov T. (2017). Enriching Word Vectors with
Subword Information. , Transactions of the Association for Computational Linguistics”,
5, pp. 135-146.

Buck C., Heafield K. and van Ooyen B. (2014). N-gram Counts and Language Models
from the Common Crawl. [in:] Proceedings of the Language Resources and Evaluation
Conference, Reykjavik, Iceland.

Celikyilmaz A., Hakkani-Tiir D., Pasupat P and Sarikaya R. (2015). Enriching Word
Embeddings Using Knowledge Graph for Semantic Tagging in Conversational Dialog
Systems. [in:] AAAI Spring Symposium Series. Association for the Advancement of
Artificial Intelligence.

Daumé III H., Langford J. and Marcu D. (2009). Search-based Structured Prediction.
,Machine Learning Journal”.

Gralinski E, Jaworski R., Borchmann t. and Wierzchon P (2016). Gonito.net — Open
Platform for Research Competition, Cooperation and Reproducibility. [in:] Branco A.,

72 Lukasz Borchmann, Andrzej Gretkowski, Filip Gralinski

Calzolari N. and Choukri K. (eds.), Proceedings of the 4REAL Workshop: Workshop on
Research Results Reproducibility and Resources Citation in Science and Technology of
Language, pp. 13-20, Portoroz, Slovenia.

Grave E., Bojanowski P, Gupta P, Joulin A. and Mikolov T. (2018). Learning Word
Vectors for 157 Languages. [in:] Calzolari N., Choukri K., Cieri C., Declerck T., Goggi
S., Hasida K., Isahara H., Maegaard B., Mariani J., Mazo H., Moreno A., Odijk J.,
Piperidis S. and Tokunaga T. (eds.), Proceedings of the 11th International Conference on
Language Resources and Evaluation (LREC 2018), pp. 3483-3487. European Language
Resources Association.

Harris Z. S. (1954). Distributional Structure. ,WORD”, 10(2-3), pp. 146-162.

Huang Z., Xu W. and Yu K. (2015). Bidirectional LSTM-CRF Models for Sequence
Tagging. ,,CoRR”, abs/1508.01991.

Ju M., Miwa M. and Ananiadou S. (2018). A Neural Layered Model for Nested Named
Entity Recognition. [in:] Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1446-1459. Association for Computational Linguistics.

Katiyar A. and Cardie C. (2018). Nested Named Entity Recognition Revisited. [in:]
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pp- 861-871. Association for Computational Linguistics.

Lample G., Ballesteros M., Subramanian S., Kawakami K. and Dyer C. (2016). Neural
Architectures for Named Entity Recognition. ,,CoRR”, abs/1603.01360.

Liu L., Shang J., Xu E, Ren X., Gui H., Peng J. and Han J. (2018). Empower Sequence
Labeling with Task-aware Neural Language Model. [in:] AAAL

Moore R. C. and Lewis W. (2010). Intelligent Selection of Language Model Training Data.
[in:] Proceedings of the ACL 2010 Conference Short Papers, ACLShort '10, pp. 220-224.
Association for Computational Linguistics.

Nadeau D. and Sekine S. (2007). A Survey of Named Entity Recognition and Classifi-
cation. ,Linguisticae Investigationes”, 30(1), pp. 3-26. Publisher: John Benjamins
Publishing Company.

Pandey P, Pudi V. and Shrivastava M. (2017). Injecting Word Embeddings with Another
Language’s Resource: An Application of Bilingual Embeddings. [in:] Proceedings of the
8th International Joint Conference on Natural Language Processing (Volume 2: Short
Papers), pp. 116-121. Asian Federation of Natural Language Processing.

Approaching Nested Named Entity Recognition with Parallel LSTM-CRFs 73

Pennington J., Socher R. and Manning C. D. (2014). Glove: Global Vectors for Word
Representation. [in:] Empirical Methods in Natural Language Processing (EMINLP),
pp. 1532-1543.

Peters M. E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K. and Zettlemoyer L.
(2018). Deep Contextualized Word Representations. ,,CoRR”, abs/1802.05365.

Przepidrkowski A., Banko M., Gorski R. and Lewandowska-Tomaszczyk B. (2012).
Narodowy Korpus Jezyka Polskiego. Wydawnictwo Naukowe PWN.

Radziszewski A. and Sniatowski T. (2011). Maca — a Configurable Tool to Integrate
Polish Morphological Data. [in:] Proceedings of the 2nd International Workshop on
Free /Open-Source Rule-Based Machine Translation (FreeRBMT11).

Rymut K. (1992). Stownik nazwisk wspétczesnie w Polsce uzywanych. Instytut Jezyka
Polskiego Polskiej Akademii Nauk.

Young T., Hazarika D., Poria S. and Cambria E. (2017). Recent Trends in Deep Learning
Based Natural Language Processing. ,,CoRR”, abs/1708.02709.

Named Entity Recognition for Polish
Using Contextual String Embeddings

Adam Kaczmarek, Pawel Rychlikowski, Michat Zapotoczny
(Computational Intelligence Research Group, Institute of Computer Science,
University of Wroctaw)

We provided a system for PolEval 2018 Named Entity Recognition task for Polish. This
task was a nested NER task with named entities either overlapping themselves or
containing sub-structures of the same named entity family. Problem was represented
as a sequence labelling task with flat tag structure converted to IOBES scheme. All
the tokens belonging to more than one named entity at the same time were consid-
ered as labelled with composite tags consisting of all the constituent single named
entity tags annotated for these tokens. In our solution we used two types of word
embeddings. First, from “standard” word embeddings we chose fastText (Joulin et al.
2016) over glove (Pennington et al. 2014) due to their better handling of subword
information. We used pretrained fastText word embeddings for Polish provided in:
https://github.com/facebookresearch/fastText/blob/master/pretraine

d-vectors.md. Second type of embeddings used in our solutions are character-based
contextual string embeddings. We decided to use the embeddings implemented in
the Flair (Akbik et al. 2018) framework constructed using forward and backward
language models. The implementation of the model presented in competition was
based on the state-of-the art sequence labelling approaches using the Flair framework.
As the final model we used a bidirectional LSTM neural network with 512 hidden
units and a CRF layer on the top. For input we provided fastText word embeddings of
size 300 and both forward and backward character language models with embeddings
of size 1024, trained on the NKJP corpus, for contextual string embeddings. Model
was trained using SGD optimizer with simple learning rate annealing for learning rate
adjusted in range between 0.1 and 0.001. For internal evaluation purposes system
was trained and validated on the training dataset from the National Corpus of Polish
split in 80%/20% proportion, achieving F1 score of 86% during training. The final

76 Adam Kaczmarek, Pawel Rychlikowski, Michat Zapotoczny

system was trained on whole NKJP corpus achieving in the final evaluation results of:
62.3% in exact metric and 74.3% in overlap metric resulting in final score of 71.9%.

References

Akbik A., Blythe D. and Vollgraf R. (2018). Contextual String Embeddings for Sequence
Labeling. [in:] Proceedings of the 27th International Conference on Computational
Linguistics (COLING 2018), pp- 1638-1649.

Joulin A., Grave E., Bojanowski P and Mikolov T. (2016). Bag of Tricks for Efficient
Text Classification. ,,arXiv:1607.01759”.

Pennington J., Socher R. and Manning C. D. (2014). Glove: Global Vectors for Word
Representation. [in:] Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1532-1543. Association for Computational
Linguistics.

Recognition of Named Entities for Polish —
Comparison of Deep Learning and Conditional
Random Fields Approaches

Michal Marcinczuk, Jan Kocon, Michal Gawor (Wroctaw University of
Science and Technology)

Abstract

In the paper we present two systems for named entities recognition for Polish submitted
to PolEval 2018 competition (Task 2). The first one, called Liner2, utilizes Conditional
Random Fields with a rich set of features. The other one, called PolDeepNer, is an
ensemble of three neural networks using a Bi-directional Long Short-Term Memory
(Bi-LSTM) or a Bi-directional Gated Recurrent Units (Bi-GRU) with a CRF layer. Each
of the networks was trained on different word embeddings. These approaches are
the state-of-the-art techniques used in many tasks from Information Extraction field.
The presented models got the second (PolDeepNer) and the third (Liner2) place in
he PolEval competition. We also present a comparison of these two models in terms
of their accuracy and algorithmic efficiency. The evaluation showed that the model
based on deep learning outperformed conditional random fields, however with the
cost of higher requirements for memory usage, model size and time processing. Both
systems are publicly available under the GPL license.

Keywords

named entity recognition, information extraction, conditional random fields, deep
learning, natural language processing, LSTM, GRU

78 Michal Marcinczuk, Jan Kocon, Michal Gawor

1. Introduction and Related Works

Named entity recognition (henceforth, NER) is one of the tasks from the field of
natural language processing and it relies on finding in text mentions which refer
to some named entities, for instance persons, locations or organizations. The set
of semantic categories of entities and types of mentions depends on the specific
application. For instance, one of the best known datasets for English called CoNLL
2003 (Sang et al. 2003) defined only four types of named entity: LOC (location),
ORG (organization), PER (person) and MISC (miscellaneous). In turn, an another
dataset for English called OntoNotes 5.0 (Weischedel et al. 2012) defines 11 types
of named entities. For Polish there are two major datasets: The National Corpus of
Polish (NKJP; Przepidrkowski et al. 2012) and Polish Corpus of Wroctaw University of
Technology (KPWr; Broda et al. 2012).

In the recent years we observe the rise of deep learning applications in the natural
language processing field (Young et al. 2018), including POS tagging, NER, parsing,
semantic role labelling, sentiment classification and many other tasks. In many
cases the application of deep learning brings a significant improvement in accuracy
comparing to the other methods. For English, the state-of-the-art systems for NER are
based on different types of neural nets, including BiLSTM-CNN-CRF (Ma and Hovy
2016), LM-LSTM-CRF (Liu et al. 2017), GRU-CRF (Yang et al. 2017) and GRU-LM-CRF
(Peters et al. 2017). According to our best knowledge there are no systems for NER
for Polish based on deep learning. The state-of-the-art systems for Polish are based
on conditional random fields — Liner2 (Marciniczuk et al. 2017) trained on the KPWr
corpus and NERF (Savary and Waszczuk 2012) trained on the NKJP corpus.

In the article we present two systems for named entity recognition for Polish which
were submitted to the PolEval 2018 competition — Liner2! based on conditional
random fields (see Section 3) and PolDeepNer? based on deep learning (see Section 4).
In Section 2 we describe the official PolEval 2018 training dataset and our approach
to simplify the named entity annotation model. In the last section (Section 5) we
compare the two different approaches in terms of their accuracy, processing time,
model size and memory usage.

2. Dataset

The National Corpus of Polish (NKJP) was the official training dataset used to train
models within PolEval 2018 Task 2. The corpus contains 87 300 named entities

Liner2 is available at https://github.com/CLARIN-PL/Liner2
ZpolDeepNer is available at https://github.com/CLARIN-PL/PolDeepNer

https://github.com/CLARIN-PL/Liner2
https://github.com/CLARIN-PL/PolDeepNer

NER for Polish — Comparison of Deep Learning and CRF Approaches 79

annotated with six main types and eight subtypes. Figure 1 presents a complete
hierarchy of the NE types.

named entity

persName orgName geogName placeName date time

/’\/’\

forename surname addName district settlement region country bloc

Figure 1: A complete hierarchy of the named entity types

Comparing to other corpora annotated with named entities the NKJP corpus contains
nested annotations of the same type and disjoint annotations. The two assumptions
make the task more difficult. In the following part of this section we discuss how we
addressed this difficulty.

Named entity recognition is solved as a sequence labelling task. The text is divided
into a sequence of tokens and each token has a label which encodes the information
if the token is part of an annotation. In case of multi-token annotations we use the
IOB (or BIO) encoding, where the first token of annotation of type NAME is labelled
as B-NAME and the following tokens of the same annotation are labelled as I-NAME.
Tokens which are not part of any annotation are labelled as O. In case of nested
annotations, the token label is created by joining labels for every single annotation,
i.e. B-TYPE1#B-TYPE2. For instance the sentence:

(...) twierdzi prof. Jacek Ruszkowski, dyrektor Centrum Zdrowia Pub-
licznego Wyzszej Szkoly Przedsiebiorczosci i Zarzadzania im. Leona
Kozminskiego w Warszawie

contains the following structure of named entities:
1. persName: Jacek Ruszkowski,

(a) persName-forename: Jacek,

(b) persName-surname: Ruszkowski,

2. orgName: Centrum Zdrowia Publicznego Wyzszej Szkoty Przedsiebiorczosci
i Zarzadzania im. Leona Kozminskiego w Warszawie,

(a) orgName: Wyzszej Szkotly Przedsiebiorczosci i Zarzadzania im. Leona
Kozminskiego w Warszawie,

80 Michatl Marcinczuk, Jan Kocon, Michal Gawor

i. persName: Leona Kozminskiego,

A. persName-forename: Leona,

B. persName-surname: Kozminskiego,
ii. placeName-settlement: Warszawie.

Figure 2 presents the sample sentence as a sequence of tokens and labels. Disjoint
and nested annotations causes the following problems:

1. Nested annotations lead to a huge number of unique labels — there are exactly
262 unique labels in the NKJP corpus. 100 of them appeared only once or twice
in the whole corpus. Infrequent annotations are difficult to be learned from
the training data. In case of CRF such a number of labels increases the training
time dramatically.

2. Nested or overlapping annotations of the same type are problematic because
they may be ambiguous when decoding from IOB format. For instance, the
sequence:

AAA B-nam
BBB I-nam#B-nam
CCC I-nam

might be interpreted as (1) “AAA BBB CCC” and “BBB” or (2) “AAA BBB” and
“BBB CCC”.

3. Disjoint annotations also might be ambiguous. Consider the following example:

AAA B-nam
BBB B-nam
ccC O

DDD I-nam

“DDD” might be a part of the first or the second annotation.

Taking into account the above issues, we have decided to simplify the annotation
model by: (1) splitting disjoint annotations into sets of continuous parts, (2) ignore
nested annotations of the same type and (3) ignore infrequent nested annotations.
We used Liner2 to convert the original NKJP corpus in TEI format to a simplified

81

NER for Polish — Comparison of Deep Learning and CRF Approaches

S[oqe[O] Se SUONeloUUE PUe SUaY0] JO 20Uanbas & 01 palIaAuod N Woj 2duajuas ojdues y :g 2in3ig

0
quoweT1310s-oweNooeTd-g#
suwreNSI0-T#oweNII0-T
sweNSI0-T#oweNII0-T
sweuins-sueNsIod-g#
sweNsIod-T#oweNSIO-T#oweNSI0-T
sweusIoJ-asweNsIod-g#
oweNsIod-g#oweNIIo-T#oweNSIO-T
sweNSI0-T#oweNSIO-T
suweNSI0-T#oweNII0-T
sweNSI0-T#oweNII0-T
sweNSI0-T#oweNSIO-T
sweNSI0-T#oweNII0-T
sweNSI0-T#oweNII0-T
sweNSI0-ggouweNIIO-T
sweN3I0-T
sweNSI0-T
swreNSI0-g
0

0
suwreuxns-sueNsIod-ggoueNsIod-T

aweusI0J-swe)NsIod-ggoueNsIad-g
0
0
0

:dxequr

I:00T:8s:3s8qns
yomu:ooe:dexd

sod:zw:us8:3s: [pe

J:wou:8s:3sqns
:dxsqurt
deexdu:oxe:xeq:Ju:qep: 1d: guoadd
u:ue8:8s:asqns

: (uoo

J7:wou: 1d:asqns
7:wou:Td:3sqns
woo: y:usl:Js: [pe
sod:u:ue8:3s: (pe
u:oon:1d:qsqns
u:ue8:3s:asqns
Tw:wou:3s:3sqns
:dxequrt
Tw:ooA:8s:qsqns
Tw:wou:3s:qsqns
:dxequrt

und : aAexq
Jaodur:xeq:8s:uT]y

e'MeZsIen
n

THSUTWZOY

'UO0ST
uo

aTuRZpRZIRZ

T
2so0zoxotqdtspozad
BIOYZS

T0sAn

fuzotTand

9TMOIDPZ

UnI3usd

I09¥01Lp
TYSMO¥ZSNY

yooer

Iosago0xd
2TZpIsaTng

aTMRZSIRMN
n

08eTySUTWZOY

'U0ST
wt

eTURZPRZIRY

T
T0S0ZDI0TQdT1SpPaziId
£xo0¥zg

(ozszAp
o8auzoTTqnd
BIMOIPZ

unI3us)

I0301Lp
T{SMO¥ZSNY

yooer

yoxd
TZpISTM]

)

82 Michatl Marcinczuk, Jan Kocon, Michal Gawor

version in IOB format>. The simplified version of the corpus contains 96.76% of the
original set of annotations and after converting it to the IOB format there were only
40 unique labels (six times less than in the original version).

During development we split the NKJP corpus into two parts in the ratio of 4:1 — 80%
of the documents were used as a training part and the remaining 20% were used for
testing. This split was used to obtain possibly the best configuration. The final models
were trained on the whole NKJP corpus.

The evaluation corpus contained 1828 documents annotated according to NKJP
guidelines. In contrast to NKJB the evaluation corpus contained documents in plain
text. In NKJP the documents were already tokenised. In order to have the tokenisation
compatible with NKJP we applied the WCRFT tagger (Radziszewski 2013).

3. Liner2 — Conditional Random Fields

Liner2* (Marciriczuk et al. 2013) is an open-source generic framework for sequence
text labeling and annotation manipulation, including recognition of named entities.
It has been already used to train a state-of-the-art NER models following the KPWr
guidelines (Marcinczuk et al. 2016), including NE boundary detection, coarse-grained
categorization (9 types) and fine-grained categorization (82 types) (Marcinczuk et al.
2017). It was used also to other Information Extraction tasks like the recognition
of temporal expressions (Kocon and Marcinczuk 2017) and events (Kocon and Mar-
cinczuk 2016). Liner2 uses Conditional Random Fields as a statistical model and a rich
space of features of different types, including: orthographic, structural, morphological,
lexicon-based, wordnet-based and compound features. Liner2 exploits language and
domain knowledge in a form of external structured resources, including:

— NELexicon2®> — a dictionary of more than 2.3 million proper names (base and
inflected forms) with fine-grained categorization (107 categories),

— PNET (Polish Named Entity Triggers®) — an electronic lexicon containing partly
inflected external or internal evidences, or trigger words, for Polish named
entities,

3The simplified version of the NKJP corpus can be found under this link: https://github.com/
CLARIN-PL/PolDeepNer/blob/master/poldeepner/data/nkjp-nested-simplified-v2.1iob.
Tz

“https://github.com/CLARIN-PL/Liner2

Shttps://clarin-pl.eu/dspace/handle/11321/247

®http://zil.ipipan.waw.pl/PNET

https://github.com/CLARIN-PL/PolDeepNer/blob/master/poldeepner/data/nkjp-nested-simplified-v2.iob.7z
https://github.com/CLARIN-PL/PolDeepNer/blob/master/poldeepner/data/nkjp-nested-simplified-v2.iob.7z
https://github.com/CLARIN-PL/PolDeepNer/blob/master/poldeepner/data/nkjp-nested-simplified-v2.iob.7z
https://github.com/CLARIN-PL/Liner2
https://clarin-pl.eu/dspace/handle/11321/247
http://zil.ipipan.waw.pl/PNET

NER for Polish — Comparison of Deep Learning and CRF Approaches

83

— plWordNet (Maziarz et al. 2016) — Polish wordnet is used to exploit synonyms

and hypernyms,

— complex features — features constructed on the basis of atomic features. They
are used to model relationships between combinations of input features and

output labels (Marcinczuk 2015),

— morphological features — are motivated by the NER grammars which utilize

morphological information (Piskorski 2004).

We trained the Liner2 model on the simplified version of NKJP corpus described in
Section 2 using the configuration from the coarse-grained KPWr model (Marcinczuk
et al. 2017). Liner2 NKJP model got the 3rd place in the competition with the
final score of 0.810 (see Table 1). The CRF-based model was outperformed by two

approaches based on deep learning.

Table 1: PolEval 2018 Task 2 official evaluation

System Exact Overlap Final
Per group LSTM-CRF

with Contextual String Embeddings 0.826 0.877 0-866
PolDeepNer 0.822 0.859 0.851
Liner2 0.778 0.818 0.810
OPI 73 0.749 0.805 0.793
joint 0.748 0.789 0.780
disjoint 0.747 0.788 0.779
via_ner 0.692 0.773 0.756
kner_sep 0.700 0.742 0.733
Poleval2k18 0.623 0.743 0.719
KNER 0.681 0.719 0.711
simple_ner 0.569 0.653 0.636

4. PolDeepNer — Ensemble of Deep Learning

We introduced two neural architectures for the recognition of named entities. The
first one is based on bidirectional LSTMs with sequential conditional random layer
above it, similarly as it was presented by Lample et al. (2016). The second one
utilizes bidirectional GRU layer (Cho et al. 2014), also together with CRF layer. Both
LSTMs and GRUs are units of the recurrent neural network (RNN), where in case of
bidirectional RNN, context of the word is captured through past and future words

84 Michal Marcinczuk, Jan Kocon, Michal Gawor

(Sahu and Anand 2016). These models rely on three sources of information about
words which are three different unsupervised distributional word representations
learned from unannotated corpora. The detailed description of the network structure
is presented in Section 4.1.

4.1. Deep Neural Network Structure

The input text is tokenised using WCRFT tagger. In the next step each tokenised
sentence goes as the input for each of the given three models:

— MODEL] - cc.pl.300.bin+BiGRU-CRF
— MODEL2 — kgr10-plain-sg-300-mC50.bin+BiGRU-CRF
— MODEL3 —kgr10_orths.vec.bin+BiLSTM-CRF

The major difference between models is the usage of different distributional word
representations. All word embedding models were built using fastText (Bojanowski
et al. 2017) - a library for efficient learning of word representations and sentence
classification. The first word embedding model for Polish (within MODEL1) was
obtained from the main fastText site’ (Grave et al. 2018). It was trained on Polish
part of Common Crawl® and Wikipedia®. The dimension of word vectors is 300. The
second word embedding model (within MODEL2) was built using KGR10 corpus (only
using words occurring more than 50 times in corpus), which contains more than 4
billion words from Polish part of the Internet. The dimension of word vectors in this
model is also 300 and the build method is skipgram. The last model is also skipgram
model build using KGR10, but with dimension 100 and minimal frequency of word in
a corpus is 5. This model can be downloaded from CLARIN DSpace repository'°.

The whole schema of processing is presented in Figure 3. At the level of processing of
tokenised sentence each input word is mapped as a vector (using all the presented
word embedding models) and these vectors are inputs for the corresponding deep
neural networks. Within each deep neural network model there are 5 layers: input
layer, dropout layer, bidirectional LSTM (or GRU), dense layer and CRF layer. Figure 4
presents this schema.

"https://s3-us-west-1.amazonaws.com/fasttext-vectors/word-vectors-v2/cc.pl.
300.bin.gz
8http://commoncrawl.org/
*https://wuw.wikipedia.org/
Yhttps://clarin-pl.eu/dspace/handle/11321/600

https://s3-us-west-1.amazonaws.com/fasttext-vectors/word-vectors-v2/cc.pl.300.bin.gz
https://s3-us-west-1.amazonaws.com/fasttext-vectors/word-vectors-v2/cc.pl.300.bin.gz
http://commoncrawl.org/
https://www.wikipedia.org/
https://clarin-pl.eu/dspace/handle/11321/600

NER for Polish — Comparison of Deep Learning and CRF Approaches 85

@

WCRFT

’ cc.pl.300.bin ‘ ’ kgr10-plain-sg-300-mC50.bin ‘ ’ kgr10_orths.vec.bin ‘

Size: 300 Size: 300 Size: 100

BiGRU-CRF

BiGRU-CRF

BiLSTM-CRF

Majority voting

Output

Figure 3: Processing pipeline of the given input (plain text)

Outputs from each deep neural model are combined using majority voting method and
the single output (a vector of labels attached to each token from the input sequence)
is returned.

4.2. Handling of Unknown Words

Popular continuous word representations, such as Word2Vec (Goldberg and Levy
2014) or GloVe (Pennington et al. 2014), produce vectors only for the known words.
FastText approach, instead of assigning a distinct vector to each word, proposes a
solution based on the skipgram model. Each word is represented as a bag-of-character

86 Michatl Marcinczuk, Jan Kocon, Michal Gawor

input: | (None, None, 300)
output: | (None, None, 300)

word_input: InputLayer

input: | (None, None, 300)

dropout_1: Dropout
output: | (None, None, 300)

input: | (None, None, 300)
output: | (None, None, 200)

bidirectiona_1(gru_1): Bidirectional (GRU)

4
input: | (None, None, 200)

output: | (None, None, 100)

dense 1: Dense

input: | (None, None, 100)
output: | (None, None, 41)

of 1: CRF

Figure 4: Layers composing a single deep neural network model

n-grams and a vector representation is attached to each n-gram. Words are represented
as a sum of these n-gram representations. This approach allows to compute word
representations also for words that did not appear in the training data (Bojanowski
et al. 2017).

4.3. Evaluation

In the official evaluation PolDeepNer got the 2nd place with the final score for of
0.851 (see Table 1). In order to publish PolDeepNer source code and models we had
to retrain them. The re-trained model obtained slightly different final score of 0.853
(see Table 2). However, the difference is not statistically significant.

5. Algorithmic Efficiency

In the recent years the state-of-the-art systems for NER are based on deep learning as
they outperform the other methods including conditional random fields. The highest
accuracy scored by a CRF-based system on the CoNLL-2003 dataset was 90.90% of
F, measure (Passos et al. 2014). In turn the highest accuracy obtained by a deep
learning-based system was scored by GRU-LM-CRF and it was 91.93% (Peters et al.

NER for Polish — Comparison of Deep Learning and CRF Approaches 87

2017). The same trend can be observed in PolEval results (see Table 1). The two best
tools are based on deep learning and they outperformed by 4-5 pp. the CRF-based
system which got the third place. The PolEval results showed that also for NER in
Polish the deep learning outperformed conditional random fields.

In our research we observed that the relatively small improvement achieved by
PolDeepNer was bought with a significant increase in time processing, model size and
memory usage. We decided to explore the topic and we compared Liner2, PolDeepNer
and a single BiLSTM-CRF (one of the nets used in PolDeepNer) using the four following
measures:

— accuracy according to PolEval evaluation procedure,

— processing time — how long the evaluation dataset is being processed (in
seconds),

— model size — total size of the model and external resources required to process
the documents. Liner2 requires tokenised text on the input, so the total size
of the model includes also morphological dictionary Morfeusz (Wolinski 2006)
and WCRFT tagger model (Radziszewski 2013).

— memory usage — total amount of memory required by the operating system
(Ubuntu 16.04) to run the tool and process the documents.

We included the single BiLSTM-CRF to see the difference between Liner2 and a simple
neural net, and the difference between the single NN and the ensemble of NNs —
PolDeepNer. Our findings are presented in Table 2 and Figure 5.

Table 2: Comparison of models in terms of their score, processing time, model size and
memory usage

Liner2 BiLSTM-CRF PolDeepNer

Score [%] 81.0 83.9 85.3
Processing speed [s] 173 164 535
Model size [GB] 0.43 7.20 16.3
Memory usage [GB] 1 7.3 17.2

In Figure 5 we can see that the differences in scores between the systems are relatively
small comparing to the other measures. The single BiLSTM-CRF obtained higher
accuracy by 2.9 pp. than Liner2 with a slightly shorter processing time — 164 seconds
comparing to 174 seconds for Liner2. However, in terms of model size and memory
usage there is a huge difference — the size of BILSTM-CRF model is 16 times larger
than Liner2 model and it requires 7 times more memory. The increase is even larger
for PolDeepNer. With an improvement of accuracy by 4.3 pp. the model size is near

88 Michatl Marcinczuk, Jan Kocon, Michal Gawor

38 times larger and the memory usage is 17 times higher. The increase in model size
and memory usage is caused by word embedding model — the core element for text
processing with neural nets. In case of PolDeepNer there are three different word
embedding models.

Our findings show that in case of unlimited resources the best approach is the one for
which the accuracy is maximized, i.e. PolDeeper. In other cases when the resources
are limited by hardware capabilities the decision should be taken with care and should
be the resultant of mentioned factors. In other words, despite Liner2 achieved lower
accuracy than PolDeepNer, in some cases it might be better or the only acceptable
choice.

Processing
speed

600 s

pa ‘\480 s
\‘

N
360's N

156B12 GB9 GB 6 GB'3 GB
Model size < = =~
N 20% 40% 60%;8&)/0 100%

Score

N 5
~\.12 GB .
N
16 GB.. Liner2
——————— BiLSTM-CRF

20 GB _ PolDeepNer

Memory
usage

Figure 5: Comparison of models in terms of their score, processing time, model size and
memory usage

NER for Polish — Comparison of Deep Learning and CRF Approaches 89

6. Summary

In the paper we presented two system for named entity recognition for Polish submitted
to PolEval 2018 competition. The first one called PolDeepNer which is based on deep
learning got 2nd place with the final score of 0.851. The other one called Liner2
which is based on conditional random fields got 3rd place with the score of 0.811.
Both system are publicly available under GPL license. In spite of the approach based
on deep learning achieved higher score than the one based on conditional random
fields we argued that due to the lower algorithmic efficiency in terms of processing
time, memory usage and model size, in some cases the approach based on conditional
random fields might be a better or the only acceptable choice.

Acknowledgments

Work financed as part of the investment in the CLARIN-PL research infrastructure
funded by the Polish Ministry of Science and Higher Education.

References

Bojanowski P, Grave E., Joulin A. and Mikolov T. (2017). Enriching Word Vectors with
Subword Information. , Transactions of the Association for Computational Linguistics”,
5, pp. 135-146.

Broda B., Marcinczuk M., Maziarz M., Radziszewski A. and Wardynski A. (2012).
KPWr: Towards a Free Corpus of Polish. [in:] Proceedings of the 8th International
Conference on Language Resources and Evaluation (LREC 2012), pp. 3218—-3222.

Cho K., van Merrienboer B., Bahdanau D. and Bengio Y. (2014). On the Properties of
Neural Machine Translation: Encoder-decoder Approaches. [in:] Proceedings of the 8th
Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8), 2014.

Goldberg Y. and Levy O. (2014). word2vec Explained: Deriving Mikolov et al.’s
Negative-Sampling Word-Embedding Method. ,arXiv:1402.3722”.

Grave E., Bojanowski P, Gupta B, Joulin A. and Mikolov T. (2018). Learning Word
Vectors for 157 Languages. [in:] Calzolari N., Choukri K., Cieri C., Declerck T., Goggi S.,
Hasida K., Isahara H., Maegaard B., Mariani J., Mazo H., Moreno A., Odijk J., Piperidis
S. and Tokunaga T. (eds.), Proceedings of the Eleventh International Conference on

90 Michal Marcinczuk, Jan Kocon, Michal Gawor

Language Resources and Evaluation (LREC 2018), pp. 3483-3487. European Language
Resources Association.

Kocon J. and Marcinczuk M. (2016). Generating of Events Dictionaries from Polish
WordNet for the Recognition of Events in Polish Documents, t. 9924 serii Lecture Notes
in Computer Science, pp. 12-19. Springer International Publishing, Cham.

Kocon J. and Marcificzuk M. (2017). Supervised Approach to Recognise Polish Temporal
Expressions and Rule-based Interpretation of Timexes. ,Natural Language Engineering”,
23(3), pp. 385-418.

Lample G., Ballesteros M., Subramanian S., Kawakami K. and Dyer C. (2016). Neural
Architectures for Named Entity Recognition. ,arXiv:1603.01360”.

Liu L., Shang J., Xu E, Ren X., Gui H., Peng J. and Han J. (2017). Empower Sequence
Labeling with Task-aware Neural Language Model. ,arXiv:1709.04109”.

Ma X. and Hovy E. (2016). End-to-end Sequence Labeling via Bi-directional LSTM-
CNNS-CRF. ,arXiv:1603.01354".

Marcinczuk M. (2015). Automatic Construction of Complex Features in Conditional
Random Fields for Named Entities Recognition. [in:] Proceedings of Recent Advances in
Natural Language Processing (RANLP 2015), pp.413-419.

Marciniczuk M., Kocon J. and Janicki M. (2013). Liner2 — a Customizable Framework
for Proper Names Recognition for Polish. [in:] Bembenik R., Skonieczny L., Rybinski
H., Kryszkiewicz M. and Niezgodka M. (eds.), Intelligent Tools for Building a Scientific
Information Platform, pp. 231-253.

Marcinczuk M., Oleksy M. and Dziob A. (2016). KPWr Annotation Guidelines —
Named Entities. CLARIN-PL digital repository.

Marciniczuk M., Kocon J. and Oleksy M. (2017). Liner2 — a Generic Framework for
Named Entity Recognition. [in:] Erjavec T., Piskorski J., Pivovarova L., Snajder J.,
Steinberger J. and Yangarber R. (eds.), Proceedings of the 6th Workshop on Balto-
Slavic Natural Language Processing (BSNLP@EACL 2017), pp. 86-91. Association for
Computational Linguistics.

Maziarz M., Piasecki M., Rudnicka E., Szpakowicz S. and Kedzia P (2016). PlWordNet
3.0 — a Comprehensive Lexical-Semantic Resource. [in:] Calzolari N., Matsumoto Y.
and Prasad R. (eds.), COLING 2016, 26th International Conference on Computational
Linguistics, Proceedings of the Conference: Technical Papers, pp. 2259-2268. Association
for Computational Linguistics.

NER for Polish — Comparison of Deep Learning and CRF Approaches 91

Passos A., Kumar V. and McCallum A. (2014). Lexicon Infused Phrase Embeddings for
Named Entity Resolution. ,,arXiv:1404.5367".

Pennington J., Socher R. and Manning C. (2014). Glove: Global Vectors for Word
Representation. [in:] Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1532-1543.

Peters M. E., Ammar W.,, Bhagavatula C. and Power R. (2017). Semi-supervised
Sequence Tagging with Bidirectional Language Models. ,,arXiv:1705.00108".

Piskorski J. (2004). Extraction of Polish Named Entities. [in:] Proceedings of the
4th International Conference on Language Resources and Evaluation (LREC 2004),
pp. 313-316, European Language Resource Association,

Przepiérkowski A., Banko M., Gérski R. L. and Lewandowska-Tomaszczyk B. (2012).
Narodowy Korpus Jezyka Polskiego. Wydawnictwo Naukowe PWN.

Radziszewski A. (2013). A Tiered CRF Tagger for Polish. [in:] Bembenik R., Skonieczny
B., Rybinski H., Kryszkiewicz M. and Niezgddka M. (eds.), Intelligent Tools for Building
a Scientific Information Platform: Advanced Architectures and Solutions. Springer
Verlag.

Sahu S. and Anand A. (2016). Recurrent Neural Network Models for Disease Name
Recognition Using Domain Invariant Features. [in:] Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp- 2216-2225. Association for Computational Linguistics.

Sang T. K., E E. and De Meulder E (2003). Introduction to the CoNLL-2003 Shared
Task: Language-Independent Named Entity Recognition. [in:] Proceedings of the 7th
Conference on Natural Language Learning at HLT-NAACL 2003, vol. 4, pp. 142-147.
Association for Computational Linguistics.

Savary A. and Waszczuk J. (2012). Nargedzia do anotacji jednostek nazewniczych.
[in:] Przepiorkowski A., Baniko M., Gorski R. L. and Lewandowska-Tomaszczyk B.
(eds.), Narodowy Korpus Jezyka Polskiego, pp. 225-252. Wydawnictwo Naukowe PWN,
Warsaw.

Weischedel R., Pradhan S., Ramshaw L., Kaufman J., Franchini M., El-Bachouti M.,
Xue N., Palmer M., Hwang J. D., Bonial C., Choi J., Mansouri A., Foster M., aati
Hawwary A., Marcus M., Taylor A., Greenberg C., Hovy E., Belvin R. and Houston A.
(2012). OntoNotes Release 5.0 with OntoNotes DB Tool v0.999 beta.

92 Michal Marcinczuk, Jan Kocon, Michal Gawor

Wolinski M. (2006). Morfeusz — a Practical Tool for the Morphological Analysis of
Polish. [in:] Ktopotek M. A., Wierzchon S. T. and Trojanowski K. (eds.), Intelligent
Information Processing and Web Mining, pp. 511-520, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Yang Z., Salakhutdinov R. and Cohen W. W. (2017). Transfer Learning for Sequence
Tagging with Hierarchical Recurrent Networks. ,,arXiv:1703.06345”.

Young T., Hazarika D., Poria S. and Cambria E. (2018). Recent Trends in Deep Learning
Based Natural Language Processing [review article]. ,JEEE Computational Intelligence
Magazine”, 13(3), pp. 55-75.

A Bidirectional LSTM-CRF Network with Subword
Representations, Character Convolutions

and Morphosyntactic Features for Named Entity
Recognition in Polish

Mateusz Piotrowski (VoiceLab), Wojciech Janowski (VoiceLab), Piotr
Pezik (VoiceLab, University of 1.6dZ)

Abstract

This paper describes a neural network architecture developed by the VoiceLab team
for the task of Named Entity Recognition in the PolEval 2018 competition. As input to
the network we used externally trained (sub)word vectors, convolutions of character
embeddings and selected morphosyntactic features of word tokens. The network
architecture was implemented in the Tensorflow framework and it featured two
bi-LSTM layers and a Conditional Random Fields output layer.

Keywords

Bidirectional LSTMs, character embeddings, Named Entity Recognition, Polish

1. Introduction

Named Entity Recognition (NER) is a well-established task of Natural Language
Processing. Annotated mentions of named entites such as people, organizations or
places are used in information extraction tasks, for instance to retrieve relations
between named persons or in information retrieval systems to enrich search indexes
with basic semantic information. Robust NER is also important in the area of natural
language understanding, where mentions of generic and domain-specific entities
such as dates, places and products need to be recognized in order to accurately

94 Mateusz Piotrowski, Wojciech Janowski, Piotr Pezik

support human-machine dialog interactions. NER is also relevant to the task of
probabilistic language modeling in Automatic Speech Recognition, which is the core
area of expertise of the VoiceLab team. For example, models of morphologically rich
languages as utilized in ASR could potentially be more generalizable if rare proper
names are correctly labeled as named entity types rather than modeled as infrequent
word tokens. In order to be useful, however, NER systems need to be sufficiently
precise and comprehensive for each of these tasks. While considerable improvements
in the performance of “deep neural network” architectures over more traditional
approaches to NER have been reported for English (Chiu and Nichols 2015) and other
languages, published NER systems for Polish (Marciniczuk et al. 2011) have mostly
relied on previous generation methods such as Conditional Random Fields (Lafferty
et al. 2001). The PolEval 2018 competition has created an opportunity to implement
and evaluate state-of-the art methods for Polish as well.

2. NER in PolEval 2018

Technically, the task of NER is usually defined as the assignment of named entity labels
to sequences of naturally-occurring word tokens. Constituents of named entities are
conventionally marked as B-TYPE or I-TYPE, where B and I stand for beginning and
inside respectively, and TYPE indicates the type of entity such as PLACE or PERSON.
Considering that word tokens which are not part of a named entity of interest are
marked with the 0 label (i.e. outside), the term BIO Notation is sometimes used to
describe the format of named entity corpora.

The gold data sets provided by the organizers consisted of the 1,088,136 word token
(77,065 sentences) manually annotated subcorpus of the National Corpus of Polish
(NKJP 1M, see Savary et al. 2012) and a smaller test set of 119,527 word tokens
(8 563 sentences). Table 1 shows the numbers of different types of named entity
annotations available in these two sets.

If we accept that the size of these annotated corpora warrants some speculations
about the frequency of named entities in written Polish texts, then we may observe
that around 6% of all tokens in NKJP 1M are part of some named entity. This in
turn indirectly proves the importance of NER in natural language processing tasks.
Additionally, it is interesting to note that personal names and organisation names are
the two most frequent types of named entities in the test and training sets.

A Bi-LSTM network for NER in Polish 95

Table 1: Statistics of different entity types in the training and test sets

Entity type / subtype Train tokens number Test tokens number

persName 1620 182
addName 1060 107
forename 12413 1373
surname 12385 1363

27478 3025

orgName 20504 2294

placeName 341 39
bloc 156 9
country 7506 804
district 344 73
region 1246 153
settlement 7743 922

17336 2000

date 8635 976

geogName 6910 777

time 1430 181

3. The Architecture

The approach to NER described in this paper is directly inspired by recent work on
recurrent neural networks and their applications in sequential classification tasks (Ma
and Hovy 2016, Lample et al. 2016). Fig. 1 shows an overview of the Tensorflow
implementation of the neural network architecture used in our proposed solution. The
first important component of this architecture is responsible for transforming word
tokens and their features into vector representations, which are then used to train
two bidirectional recurrent network layers responsible for the sequential classification
of the input word tokens.

3.1. Word Token Representations

We derive three types of word representations from sequences of tokens to be marked
with named entity labels. First, vectors of character embeddings are derived from the
word tokens and passed through a convolutional subsection of the network with a
max-over-time discretization. The resulting character-based representations of token
sequences are passed to the input layer of the recurrent section of the network, marked

96 Mateusz Piotrowski, Wojciech Janowski, Piotr Pezik

Label sequence

t

CRF
\ J
'S T —\
Bidirectional LSTM
N J

T

Bidirectional LSTM

. S

N
’ \

Word representation

N

Char-based . Feature-based
. Word embedding .
representation representation
X T A A
s N
Max-over-time
pooling
. J
T Feature
embeddings
s N
. FastText
Convolutions embeddings o T_ ________
\ J ,' \:
T A ' Word feature !
p N ' extractor ;
Char embeddings

I

Figure 1: An overview of the recurrent neural network architecture

Input sentence

as Word Representation in the diagram. Adding character-based embeddings is
motivated by the need to capture certain word shape characteristics of named entities,
such as upper case initials in proper nouns which make up named entities (cf. Chiu
and Nichols 2015, Ma and Hovy 2016).

Secondly, the input token sequences are matched against 300-dimensional FastText
subword embeddings vectors derived from a Common Crawl dump of Polish texts
(Grave et al. 2018) and concatenated to the Word Representation layer. Interest-
ingly, we have observed a considerable improvement resulting from the application

A Bi-LSTM network for NER in Polish 97

of the Common Crawl embeddings over embeddings computed from the balanced
version of the National Corpus of Polish. This may be partly explained by the fact
that the former embeddings are not only derived from a much larger corpus, but
also case-sensitive, thus preserving an important clue in the task of named entity
recognition in written texts.

Finally, main part-of-speech and detailed morphosyntactic labels (selected by applying
a frequency threshold of 20 occurrences in the training set) obtained from the APT PL
tagger (Pezik and Laskowski 2017) were also appended to the word representation
layer. The obvious intuition in this case was that named entities are usually com-
posed of word tokens from a narrow set of grammatical categories, such as nouns
or adjectives which in Polish also occur in predictable grammatical configurations
preserving case, gender and/or number agreement or government relations. This in
turn potentially provides more generic clues about the boundaries of named entities.

3.2. Bidirectional LSTMs with a CRF layer

Two bidirectional recurrent layers composed of long short-term memory cells with
output dropout values of 0.25 were used to model the context preceding and following
the word tokens to be sequentially classified as part of named entities. Additionally,
we used a Conditional Random Fields layer to model the restrictions inherent to the
BIO annotation of named entities in texts. As a theoretical advantage, using CRFs
over a softmax function on the final layer made it possible to jointly model sequence
probabilities of the predicted labels rather than separated local probabilities of their
outputs (Ma and Hovy 2016).

3.3. Combining Models

Using the network architecture described above, we trained six separate models, one
for each of the main types of named entities and its subtypes described in Table 1. The
labels are predicted independently by each of the six models are then combined to
produce nested entity annotations as specified in the PolEval task. For example, given
the sequence of tokensulica Adama Mickiewicza, the geogName model is expected
to assign the sequence of labels B-geogName I-geogName I-geogName. At the same
time, the persName model is expected to predict the labels 0 B-persName-forname
I-persName-surname for this sequence of word tokens. Given these outputs, our
algorithm will mark the persName tokens of the sequence as fully nested in the
geogName entity and calculate their character offsets accordingly.

98 Mateusz Piotrowski, Wojciech Janowski, Piotr Pezik

4. Results and Discussion

Table 2 shows the averaged results for overlapping and exact boundary matches
of named entities obtained with the official evaluation script. The overall results
are marginally better than the scores calculated for our submission by the PolEval
organizers due to the fact that we corrected an inconsistent spelling of one of labels
in the test set.’

More detailed results for both overlapping and exact named entity matching are
available in Tables 4 and 3 respectively. In general, there is a considerable difference in
the precision and recall scores obtained for different types named entities. For example,
forenames were recognized quite well (with an F-score of 0.85-0.88), whereas dates
and time expressions, which were more varied, challenging to accurately tokenize
and less represented in the training data were recognized with significantly lower
accuracy. Such differences in the performance on different types of entities should be
considered carefully when comparing different NER systems.

Table 2: Averaged evaluation results obtained on the corrected PolEval test set using the
official evaluation script

Matching Precision Recall F,
Overlapping 0.765 0.786 0.775
Exact 0.685 0.704 0.694

5. Conclusions

The architecture described in this paper was inspired by recent advances in deep
learning research and vector-based word representations. One of the important
conclusions of our experiments is that differences in the exact configuration, tuning
and optimization of seemingly similar neural network architectures may result in
significant differences in the rates of accuracy obtained for a particular system. Equally
important is the quality and coverage of vector word representations: one of the
most considerable improvements we observed in our experiments resulted from using
the FastText Common Crawl embeddings in the input layer fed into the bidirectional
LSTM layer of our network.

!The persName_addName label was also spelled as persName_addname in the test dataset.

A Bi-LSTM network for NER in Polish 99

Table 3: Evaluation results for exact matches of different entity types in the test set

Entity type / subtype Precision Recall F,

persName 0.769 0.845 0.805
addName 0.123 0.323 0.178
forename 0.826 0.886 0.855
surname 0.764 0.831 0.796

orgName 0.612 0.737 0.669

placeName 0.453 0.749 0.527
bloc 0.079 0.632 0.140
country 0.831 0.910 0.869
district 0.254 0.630 0.362
region 0.379 0.704 0.493
settlement 0.742 0.844 0.790

date 0.313 0.426 0.361

geogName 0.484 0.610 0.540

time 0.224 0.380 0.282

Table 4: Evaluation results for partial (overlapping) matches of different entity types in the
test set

Entity type / subtype Precision Recall F;

persName 0.849 0.932 0.888
addName 0.128 0.337 0.186
forename 0.857 0.919 0.887
surname 0.829 0.902 0.864

orgName 0.727 0.876 0.794

placeName 0.501 0.866 0.591
bloc 0.118 0.947 0.211
country 0.865 0.947 0.905
district 0.269 0.667 0.383
region 0.510 0.947 0.663
settlement 0.771 0.877 0.821

date 0.719 0.979 0.829

geogName 0.615 0.775 0.685

time 0.346 0.587 0.436

Acknowledgments

The work described in this paper was carried out within a grant funded by the
European Union Regional Operation Program for the Pomeranian Voivodship for

100 Mateusz Piotrowski, Wojciech Janowski, Piotr Pezik

the years 2014-2020 based on the Resolution no 190/214/17 of the Pomeranian
Voivodship Board, project RPPM.01.01.01-22-0026/16.

References

Chiu J. P C. and Nichols E. (2015). Named Entity Recognition with Bidirectional
LSTM-CNNs. ,,CoRR”, abs/1511.08308.

Grave E., Bojanowski P, Gupta P, Joulin A. and Mikolov T. (2018). Learning Word
Vectors for 157 Languages. [in:] Calzolari N., Choukri K., Cieri C., Declerck T., Goggi
S., Hasida K., Isahara H., Maegaard B., Mariani J., Mazo H., Moreno A., Odijk J.,
Piperidis S. and Tokunaga T. (eds.), Proceedings of the 11th International Conference on
Language Resources and Evaluation (LREC 2018), pp. 3483-3487. European Language
Resources Association.

Lafferty J. D., McCallum A. and Pereira E C. N. (2001). Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data. [in:] Brodley C. E.
and Danyluk A. P (eds.), Proceedings of the Eighteenth International Conference on
Machine Learning (ICML 2001), pp. 282-289. Morgan Kaufmann.

Lample G., Ballesteros M., Subramanian S., Kawakami K. and Dyer C. (2016). Neural
Architectures for Named Entity Recognition. ,,CoRR”, abs/1603.01360.

Ma X. and Hovy E. H. (2016). End-to-end Sequence Labeling via Bi-directional LSTM-
CNNs-CRF. ,CoRR”, abs/1603.01354.

Marcinczuk M., Stanek M., Piasecki M. and Musiat A. (2011). Rich Set of Features for
Proper Name Recognition in Polish Texts. [in:] Bouvry P, Klopotek M. A., Leprévost
E, Marciniak M., Mykowiecka A. and Rybinski H. (eds.), Security and Intelligent
Information Systems - International Joint Conferences (SIIS 2011), Revised Selected
Papers, Lecture Notes in Computer Science vol. 7053, pp. 332—-344. Springer.

Pezik P and Laskowski S. (2017). Evaluating an Averaged Perceptron Morphosyntactic
Tagger for Polish. [in:] Vetulani Z. and Paroubek P (eds.), Proceedings of the 8th
Language & Technology Conference: Human Language Technologies as a Challenge for
Computer Science and Linguistics (LTC 2017), pp. 372-376. Fundacja Uniwersytetu im.
Adama Mickiewicza w Poznaniu.

Savary A., Chojnacka-Kuras M., Wesotek A., Skowroniska D. and Sliwinski P (2012).
Anotacja jednostek nazgewnicgych. [in:] Przepidérkowski A., Banikko M., Gorski R. L.
and Lewandowska-Tomaszczyk B. (eds.), Narodowy Korpus Jezyka Polskiego, pp. 129—
165. Wydawnictwo Naukowe PWN, Warsaw.

KNER: Named Entity Recognition for Polish

Krzysztof Wrobel (Jagiellonian University and AGH University of Science
and Technology), Aleksander Smywinski-Pohl (AGH University of Science
and Technology)

Abstract

The article presents named entity recognition system, which participated in the
second task of PolEval 2018 competition. It utilizes recurrent and convolutional
neural networks with conditional random fields. The only external resources are
provided by the morphological tagger KRNNT and word embeddings. The distinctive
aspect of the solution is the lack of use of gazetteers or lexicons. Two approaches
are presented to address nested annotation of named entities, each with its own
advantages. The solution obtains 81.4% F; measure.

Keywords

Named Entity Recognition, NER, recurrent neural networks, Polish

1. Introduction

Named entity recognition (NER) is a natural language processing task, which aim
is to find all named entities in a text and classify to pre-defined categories (usually
names of person, locations, organizations). It is a very important step in NLP pipelines
because named entities should be treated as one unit.

Available Polish NER tools Nerf (Savary et al. 2010) and Liner2 (Marcinczuk et al.
2013) utilize CRF as the main learning algorithm and exploits gazetteers. Nerf
supports nested categories. Other research focused on a knowledge-based system
without the need of training data (Pohl 2013).

102 Krzysztof Wrobel, Aleksander Smywinski-Pohl

The state-of-the-art NER solutions for English utilizes combination of neural networks
(recurrent and convolutional) with conditional random fields (CRF; Huang et al. 2015,
Ma and Hovy 2016) achieving above 91% F; score.

This work presents NER system named KNER, which uses neural networks combined
with CRF and morphological tagger for feature generation. The solution participated
in the second task of PolEval 2018 competition.

2. Data

National Corpus of Polish (NKJP; Przepidrkowski et al. 2012) was used as training
data. It is well-balanced corpus, which includes articles from newspapers and journals,
transcriptions of spoken conversations, and user-generated content from web forums.
The corpus was manually annotated by 2 annotators and 1 person who was resolving
disagreements.

In comparison to other NER datasets, NKJP uses nested annotation, so simple data
format (e.g. CONLL) cannot be used. Example of nested annotation:

[[JOhn]forename [Smith]surname]persName eats a cake.

In the NKJP following named entity categories and its subcategories are recognized:

— persName (person name)

— forename

— surname

— addName (alias, pseudonym, nickname)
— orgName (organization name)
— geogName (geographical name)

— placeName (geopolitical name)
— district

— settlement

— region

— country

— bloc (geopolitical unit comprising two or more countries)
— date

— time

A Bi-LSTM network for NER in Polish 103

Even single personal entities have to be annotated twice, e.g. John as forename
and also persName. It disrupts the accuracy of Polish NER tools because it can be
automatically inferred.

[[JOhn]forename]persName eats a cake.

What is more, derivative phrases are annotated, e.g. Polish is a derivative of class
country.

For the purpose of PolEval, organizers provided new testing data. In the evaluation
process derivative named entities are treated as non-derivative.

One error, related to the name of category, is present in the testing data: almost whole
(91%) addName annotations are wrongly spelled (addname — small letter n) and
they decrease the scores by almost 1.8 percentage points. However, it can be simply
corrected e.g. by lower casing categories in comparison in the official testing script.
In the script is also a bug discarding some annotations — updated version is available
athttps://github.com/kwrobel-nlp/poleval2018-ner.

Distributions of categories in training and testing data are presented in Fig. 1. Train-
ing data is more than two times larger than testing data and it consists of 86793
annotations, where the testing data consists of 40220 annotations.

2.1. Adaptation

Two approaches have been employed to address nested annotation and in the end
allow use of CONLL format and IOB/BIO encoding. The encoding labels each token
as B-category if the token begins a named entity, I-category if the token is inside the
named entity and O for other tokens not in named entities.

In both solutions more than one model is trained and the results are combined.

2.2. First Approach

The first model recognizes the first level named entities (the longest). The second
model recognizes second level entities among the first level entities.

Firstly, all nested named entities are discarded. It reduces number of named entities
to 64.15%. Example sentence:

[[JOhn]forename [Smith]surname]persName eats a cake in [Cracow]settlement'

https://github.com/kwrobel-nlp/poleval2018-ner

104 Krzysztof Wrébel, Aleksander Smywinski-Pohl

Distribution of categories

| |
Il Testing data
[Training data

bloc
district
placeName
time
region
addName
date
geogName

country
settlement

orgName

surname

forename

persName

0 5 10 15 20 25
Percentage amount

Figure 1: Distributions of categories in training and testing data (addName category is
corrected)

is transformed to:

[John Smith],.sname €ats a cake in [Cracow Jse¢rement -

Then all named entities are extracted with assigned labels as a feature in IOB encoding.
New training dataset is created with annotated only nested entities.

The sentence presented above produces 2 samples (features are defined in superscript):
[JohnB—persName]forename [Smithl—persName]surname

CracowB—settlement

This whole approach covers 99.97% of all named entities. Multiple nesting is rare.

In conclusion, two models are trained: the first general and the second only for
detection of nested NE.

A Bi-LSTM network for NER in Polish 105

2.3. Second Approach

For each category, a separate model is trained. However, there are cases when
named entities with the same category are nested (1.1% of all named entities), e.g.
[[Wawel]geogname Castle]geooname — they are discarded.

Example sentence:
[[JOhn]forename [Smith]surname]persName eats a cake.

is transformed to:

— for persName model: [John Smith],,sname €ats a cake.
— for forename model: [John],¢nqme Smith eats a cake.
— for surname model: John [Smith],,,,.me €ats a cake.

— for other models: John Smith eats a cake.

3. Features

Input sentences are tokenized using morphological tagger KRNNT (Wrdbel 2017).

Features are assigned to tokens. The main feature is a word form. Additional features
based on KRNNT and Liner2 (Marcinczuk et al. 2013) were added (dimension of
feature embeddings is provided in parenthesis):

— shape (10) — collapsed shape of token — upper case letters are represented
as u, lower case letters as [, digits as d, other characters as x (e.g. Wrobel2018
gives ullllldddd and after collapsing uld),

— 3 characters prefix (10),

— 3 characters suffix (10),

— whether token is all upper case (1),

— whether token is all lower case (1),

— whether first character of token is upper case and the rest lower case (1),
— whether token is a number (1),

— whether space is before token (1),

— base form (50),

— full tag (20),

106 Krzysztof Wrobel, Aleksander Smywinski-Pohl

— part-of-speech (10),
— case (5),

— person (5),

— number (5),

— gender (5).

Some of the features are overlapping, e.g. a case of characters with a shape feature.
Also, character word embeddings should be able to infer these form-based features.

4. Network Architecture

The solution is based on a neural network combined with CRF (Yang et al. 2018). The
first layer is a bidirectional long short-term memory (LSTM). On input are features
represented by embeddings. There is one special input: embedding of word form
computed on its characters. The character word embedding is generated by convolu-
tional neural network (CNN). The output of the first layer is connected to the second
bidirectional LSTM and CRF is at the end.

5. Results

The network was trained using stochastic gradient descent by 100 iterations. Word
embeddings were trained on full NKJP (Mykowiecka et al. 2017).

An evaluation was performed using F-measure for an exact and overlapping (partial)
match. Final score is calculated as weighted average between them (0.8-exact_score+
0.2-overlap_score).

Official results of PolEval 2018 are presented in Table 1. Systems KNER_v1 and
KNER_v2 employ the first and the second approach respectively. However, KNER
solutions have been wrong, because they discarded all entities marked as derivative.
After correcting the mistake, it could take the third place in the ranking. More detailed
scores are presented in Table 2. The mistake cost 12 percentage points in the final
score.

A Bi-LSTM network for NER in Polish 107

Table 1: Results of PolEval 2018 task 2. Final score is weighted average between exact and
overlap score

System Exact Overlap Final

Per group LSTM-CRF with Contextual String Embeddings 0.826 0.877 0.866

PolDeepNer 0.822 0.859 0.851
Liner2 0.778 0.818 0.810
OPI 73 0.749 0.805 0.793
joint 0.748 0.789 0.780
disjoint 0.747 0.788 0.779
via_ner 0.692 0.773 0.756
KNER_v2 0.700 0.742 0.733
Poleval2k18 0.623 0.743 0.719
KNER_v1 0.681 0.719 0.711
simple ner 0.569 0.653 0.636

Table 2: Results of KNER system employing second approach with fixed mistake

Measure Precision Recall F,

Exact 0.913 0.808 0.857
Overlap 0.867 0.767 0.814
Final 0.823

6. Conclusion

Presented solutions have some drawbacks. In the first approach, nested entities are
being recognized without the full context of a sentence. The second approach needs
many models to run and does not support nested entities within the same category.
The solutions do not utilize any gazetteers or lexicons and achieve satisfactory results.

An error analysis showed that the same token in the same paragraph can be classified
differently by the presented neural network. This information could be exploited to
improve scores.

Acknowledgments

This work was supported by the Polish National Centre for Research and Development
LIDER Program under Grant LIDER/27/0164/1-8/16/NCBR/2017 titled “Lemkin —

108 Krzysztof Wrobel, Aleksander Smywinski-Pohl

inteligentny system informacji prawnej”. This research was also supported in part by
PLGrid Infrastructure.

References

Huang Z., Xu W. and Yu K. (2015). Bidirectional LSTM-CRF Models for Sequence
Tagging. ,,CoRR”, abs/1508.01991.

Ma X. and Hovy E. H. (2016). End-to-end Sequence Labeling via Bi-directional LSTM-
CNNs-CRF. ,CoRR”, abs/1603.01354.

Marcinczuk M., Kocon J. and Janicki M. (2013). Liner2 — a Customizable Framework
for Proper Names Recognition for Polish. [in:] Bembenik R., Skonieczny L., Rybinski
H., Kryszkiewicz M. and Niezgdédka M. (eds.), Intelligent Tools for Building a Scientific
Information Platform, pp.231-253.

Mykowiecka A., Marciniak M. and Rychlik P (2017). Testing Word Embeddings for
Polish. ,,Cognitive Studies / Etudes Cognitives”, 17, pp. 1-19.

Pohl A. (2013). Knowledge-based Named Entity Recognition in Polish. [in:] Proceedings
on 2013 Federated Conference on Computer Science and Information Systems (FedCSIS
2013), pp. 145-151. IEEE.

Przepidrkowski A., Banko M., Gérski R. L. and Lewandowska-Tomaszczyk B. (eds.)
(2012). Narodowy Korpus Jezyka Polskiego. Wydawnictwo Naukowe PWN, Warsaw.

Savary A., Waszczuk J. and Przepiorkowski A. (2010). Towards the Annotation
of Named Entities in the National Corpus of Polish. [in:] Calzolari N., Choukri K.,
Maegaard B., Mariani J., Odijk J., Piperidis S., Rosner M. and Tapias D. (eds.),
Proceedings of the 7th International Conference on Language Resources and Evaluation
(LREC 2010), European Language Resources Association.

Wrébel K. (2017). KRNNT: Polish Recurrent Neural Network Tagger. [in:] Vetulani
Z. and Paroubek P, (eds.), Proceedings of the 8th Language & Technology Conference:
Human Language Technologies as a Challenge for Computer Science and Linguistics,
pp- 386-391. Fundacja Uniwersytetu im. Adama Mickiewicza w Poznaniu.

Yang J., Liang S. and Zhang Y. (2018). Design Challenges and Misconceptions in
Neural Sequence Labeling. [in:] Proceedings of the 27th International Conference on
Computational Linguistics (COLING).

Flat Approach to Finding Nested Named Entities

Paulina Zak (Polish Japanese Academy of Information Technology)

Abstract

We describe a system implemented for recognizing Named Entities evaluated as a
part of task 2 in PolEval 2018, the competition designed for the creation of natural
language processing tools in Polish. The presented system uses Bidirectional GRU
neural network, trained on 1-million word subcorpus from the National Corpus of
Polish, with word embeddings and binary features as an input and flat entities as an
output. Two types of approaches were tested for flattening nested named entities in
the data, removing all but one label for each word and concatenating labels of each
word into a new category.

Keywords

Natural Language Processing, Named Entity Recognition, NER, GRU

1. Introduction

Recognition of Named Entities (NER) is a well-known problem in which the system
locates and classifies specific phrases into categories describing a real-world objects
that can be denoted with a proper names. List of what is considered to be named
entity varies by the usage. Most datasets, such as CONLL-2003 (Sang and Meulder
2003), limit themselves only to general categories such as Person, Location and
Organization, as shown in Fig. 1. Others, such as Sekine Extended Named Entity
Hierarchy (Sekine et al. 2002), add more varied categories for e.g. God, Product or
Disease. The numbers of categories also differ between tasks, from simple 4 classes
in CONLL-2003 (Sang and Meulder 2003) to fine-grained with multiple levels of
hierarchy such as HYENA (Yosef et al. 2012).

110 Paulina Zak

Person
To jest Maria Nowak

Figure 1: Example of the text with named entity “This is Maria Nowak”, where “Maria Nowak”
is tagged as the entity

Named Entity Recognition is an important task in processing text information. Found
and processed entities are not only valuable on their own but they can be a feature or
input for multiple other tasks such as machine translation, knowledge graphs creation
or question answering. Thanks to such a varied usage in Natural Language Processing,
multiple different datasets and competitions were created to enhance the performance
of the NER systems. PolEval 2018 Task 2 is one of them and focuses on targeting
information written in the Polish language.

2. Previous Approaches

Interest in Named Entity Recognition started to rise around 1995 with the first major
event related to the task MUC-6 (Nadeau and Sekine 2007). Back then most of
the solutions were based on rules and gazetteers, however, the task have evolved
through the years with more complex systems. With more computing power and new
research in Al field, the focus changed from man-made solutions to machine learning
approaches.

2.1. Rule-based

Early tasks were dominated by rule based solutions (Jyoti Mahanta 2013). In those
systems man-made rules were created and applied to input text in search for named
entities. Those rules were created based on syntactic, linguistic and domain knowledge.
In the recent years, most of rule-based systems were replaced by supervised learning,
with models trained on corpora labeled with named entities. Although, if the training
corpus is not available, rule-based systems are still viable solutions (Nadeau and Sekine
2007).

A Bi-LSTM network for NER in Polish 111

2.2. Gazetteers

Systems based on gazetteers, frequently with the addition of rules, were also a popular
choice for early Named Entity Recognition. Gazetteer consists of some external
knowledge source containing names of entities such as locations, names of famous
people, organizations etc. This approach requires either the hand crafting of name
lexicons or some dynamic approach to obtaining a gazette from the corpus or another
external source (Data Community 2013). Depending on the task they can still be
used as a feature to machine learning systems.

2.3. Machine Learning

Currently most of the systems are based on machine learning and especially neural
networks. The number of possible architectures for machine learning NER systems are
vast and the decision of which one to choose depends on many variables. In the case of
no annotated data, semi-supervised or even unsupervised NER systems can be created.
However in the standard case when a corpus is available, supervised methods are still
the most popular. In these approaches, NER is essentially posed as a classification
problem. The most frequently applied technique in the CoNLL-2003 shared task was
the Maximum Entropy Model. Five systems used this statistical learning method (Sang
and Meulder 2003). In the last couple of years, statistical models were overtaken by
neural networks. Currently, for CONLL-2003 dataset the state of the art was achieved
by Bidirectional LSTM-CRF Model (Huang et al. 2015) with another interesting model
that achieves high results in this task being Bidirectional LSTM-CNN (Chiu and Nichols
2015).

3. The Data

3.1. 1-million-word Subcorpus

The training dataset for PolEval 2018 Task 2 was 1 million word sub-corpus created
from National Corpus of Polish (Savary et al. 2012). The data set has undergone
manual verification of named entities. In the most popular English datasets, CONLL-
2003 (Sang and Meulder 2003) and MUC-7 (Chinchor 2001), the annotation of the
corpora were made as simple as possible. Those tasks were created with a purpose of
automatically detecting and categorizing entities in mind and adding more complexity
to the task would not be beneficial.

112 Paulina Zak

The taxonomy of named entities in the National Corpus of Polish has average com-
plexity, we present it in Fig. 2.

persName time orgName date region geogName placeName
forename addName surname bloc country settlement district

Figure 2: Named entity hierarchy in National Corpus of Polish

We want to highlight three key aspects:

1. Labels hierarchy. The named entity hierarchy consists of two levels of cate-
gories, which makes in total 14 possible labels to annotate (Fig. 2).

2. Nested phrases. Different labels can overlap with each other, if part of the
named entity is a different named entity in itself (Fig. 3).

3. Non-continuous named entity. When two or more words are a part of one
entity but in between them other words are placed (Fig. 4).

geogName
\>
persName
/ \
persName_forename persName_surname
| |
ul. Sw. Jana Nepomucena

Figure 3: A sentence with nested entity “Saint John Nepomucene street” where the whole
sentence is categorized as geogName and ‘John Nepomucene” is persName

3.2. Nested Entities

In this paper we want to focus on the impact of nested phrases on the performance
of the systems. Nested named entities were not as widely developed in previous

A Bi-LSTM network for NER in Polish 113

persName persName
foren::1m<%‘surr1afT1e
To jest Jan i Mana Nowak

Figure 4: A sentence with non-continuous named entities “This is Jan and Maria Nowak”
where both ‘Jan Nowak” and “Maria Nowak” are named entities

tasks mostly due to practical reasons (Finkel and Manning 2009). The most known
datasets such as MUC and CONLL were flatly annotated and ignored any nesting all
together. However some corpora, particularly in biomedical domain, were created
with nested entities in mind. For example 17% of the entities in the GENIA corpus are
embedded within another entity and in the ACE corpora, 30% of sentences contain
nested entities (Katiyar and Cardie 2018).

Thanks to the design of the National Corpus of Polish, we can analyze the nested data
in this corpus. In the 1-million sub-corpus, 3599 words were found to be part of the
nested entity, which makes 4.1% of all words classified as named entity.

4. RNN and GRU

4.1. Recurrent Neural Network

A recurrent neural network (RNN) is a machine learning model designed to handle
sequential data. It is designed to add information about the previous parts of the
sequence into present input. However due to an issue called vanishing gradient,
simple RNN has difficulty to retain more information than few previous inputs. One of
the most popular solutions to this issue (next to Long-Short Term Memory Network)
is Gated Recurrent Unit network architecture, which will be described in a paragraph
below.

4.2. GRU

GRU is a mechanism introduced in 2014 by Cho et al. (2014). To solve the vanishing
gradient problem of a standard RNN, GRU introduces update gate and reset gate.

114 Paulina Zak

Those gates can decide what information will be passed into the next cell in the
sequence. With this ability they can retain the most important information even in
longer sequences. In comparison to LSTM, GRUs have been shown to perform better
on smaller datasets (Chung et al. 2014).

4.3. Bidirectional RNN

Bidirectional RNN (BRNN) means using two RNNs, one for reading the text input
from beginning to the end (forward) and the other — backwards. Outputs of both
RNN networks are then concatenated for each token. Thanks to this architecture
the neural network can use information about preceding and following words in a
sentence.

5. System

5.1. Input

Each document in the dataset was split to words and divided into two parts, embed-
ding and binary feature. For the system we have used word embeddings vectors of
300 dimensions for Polish, trained on Wikipedia (Bojanowski et al. 2016). Those
embeddings were also additionally trained during NER model training. Three types
of binary features were included. For each word in a sequence, they answer the
following questions:

1. Does the word start with a capital letter?
2. Does the word has a dot in it?

3. Does the word has a number in it?

5.2. Architecture

The model was created in Python using Keras API with Tensorflow backend. We have
created a two-input model using functional API. Trainable word embeddings were
use as the first input and binary features as the second one. After one Bidirectional
GRU layer, dropout of value 0.5 was applied. As the last element, dense layer with
softmax was added.

A Bi-LSTM network for NER in Polish 115

input: | (None, 188)
output: [(None, 188)

emb_input: InputLayer

4

. . input: (None, 188) input: | (None, 188, 3)
embedding_1: Embedding words: InputLayer
output: | (None, 188, 300) output: [(None, 188, 3)

/

input: | [(None, 188, 300), (None, 188, 3)]
output: (None, 188, 303)

concatenate 1: Concatenate

4

input: | (None, 188, 303)

bidirectional 1(gru_1): Bidirectional(GRU)
output: [(None, 188, 400)

input: | (None, 188, 400)
output: | (None, 188, 400)

dropout_1: Dropout

4
input: | (None, 188, 400)

output: [(None, 188, 85)

dense 1: Dense

Figure 5: Architecture of trained network

5.3. Output

For the output we have chosen a simple IO tagging. We have created two versions of
the system, differing only in the structure of the output. The differences are illustrated
in Table 1 by a comparison in the sentence from Fig. 3.

In the unprocessed dataset we would have 8 labels in total: 4 labels geogName,
2 persName, 1 persName_surname and 1 persName_forename.

The first system modifies all overlaping labels in nested entity by concatenating it into
one label. After preprocessing the system would produce 4 labels: 2 geogName, 1 label
geogName-persName-persName forename and 1 geogName-persName-persName_-
surname.

The second system would only use the most specific value in the set which would
remove all nested phrasing. After preprocessing the system would produce 4 labels:
2 geogName, 1 label persName forename and 1 persName_surname.

116

Paulina Zak

Unfortunately none of the solutions was adapted to properly categorize non-
continuous categories and will not be able to assemble them properly.

Table 1: Example of the output labeling for a sentence

Sentence # of
Type .
ul. Sw. Jana Nepomucena labels
Original geogName geogName geogName geogName 8
persName, persName,
persName persName
_foreName _surname
Concatenated geogName geogName geogName- geogName- 4
persName persName-
_forename persName
_surname
One label geogName geogName persName persName 4
_forename _surname

5.4. Concatenated Labels Analysis

From 14 original labels after concatenation 84 labels were created. The distribution
of labels was highly imbalanced as almost half of them occurred fewer than 10 times
in the training set, as in Table 2.

Table 2: Distribution of the number of occurrences per labels

6. Evaluation

Occurrences

Number of labels

10000 or more
1000 or more
100 or more
10 or more

1 or more

5
13
26
43
85

The system was evaluated on the test set provided by organizers of PolEval 2018.
The evaluation script measured the performance of the system in two ways, if either
whole or only partial entities were matched:

A Bi-LSTM network for NER in Polish 117

— exact match — only fully matched named entities were counted,

— overlap match — if gold and predicted named entities matched partially they
were counted as a true positive.

For each evaluation type three metrics were calculated:

— precision — ratio of correctly predicted positive observations to the total pre-
dicted positive observations,

— recall — ratio of correctly predicted positive observations to all observations in
the class,

— F; score — the weighted average of precision and recall.

We have evaluated two types of output design as described in Section 5, as well as
impact of different types of binary features on the performance of the system. The
results are presented in Tables 3 and 4.

Concatenated system performed better than one-label solution by a significant margin.
This is probably due to a missing information of more generic entities from the
hierarchy. The phrase “Anna Nowak”, should have 3 labels, Anna — persName_-
foreName, Nowak — persName surname, “Anna Nowak” — persName. But the
system with one label output, by design, cannot process labels higher in the hierarchy
of categories. We have tried to generate the more generic entities by merging labels
with subtypes in post-processing scripts but the results still not matched the results
from concatenated system.

Table 3: Overlap match results of different version of the system with features

Output Features Precision Recall F,; score
Concatenated none 0.873 0.554 0.678
Concatenated first capital letter 0.826 0.618 0.707
Concatenated has dot 0.865 0.559 0.680
Concatenated s digit 0.884 0.553 0.681
Concatenated all 0.852 0.615 0.714
One label all 0.837 0.498 0.625

7. Conclusion and Future Work

In this paper we have shown how a simple, flat system can recognize nested named
entities. In our system the best results, for both exact as well as overlap matching,
were achieved by the version with all three binary features used and the output

118 Paulina Zak

Table 4: Exact match results of different version of the system with features

Output Features Precision Recall F; score
Concatenated none 0.746 0.474 0.580
Concatenated first capital letter 0.731 0.547 0.626
Concatenated has dot 0.729 0471 0.573
Concatenated s digit 0.748 0.469 0.576
Concatenated all 0.753 0.543 0.631
One label all 0.682 0.406 0.509

entities concatenated into one label. However, more work can be done in assessing
the best method of finding and labeling nested entities in text. Firstly, other neural
networks architectures and machine learning methods should be researched, such as
LSTM-CRF(Conditional Random Fields) (Lample et al. 2016) or LSTM-CNN (Chiu
and Nichols 2015) which achieves state of the art results for English language datasets
in the NER task. After setting a proper baseline on a flat system, the research might go
more deeply into understanding the information transmitted by the nested structure.
With one of the interesting possibilities being usage of TreeLSTM architecture, with tree
representation of the sentences, applied successfully to other tasks such as sentiment
analysis (Tai et al. 2015).

References

Bojanowski B, Grave E., Joulin A. and Mikolov T. (2016). Enriching Word Vectors with
Subword Information. ,,CoRR”, abs/1607.04606.

Chinchor N. (2001). Message Understanding Conference (MUC) 7. LDC2001TO02.
Linguistic Data Consortium Web download.

Chiu J. P C. and Nichols E. (2015). Named Entity Recognition with Bidirectional
LSTM-CNNs. ,,CoRR”, abs/1511.08308.

Cho K., van Merrienboer B., Giilcehre C., Bougares E, Schwenk H. and Bengio Y.
(2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. ,,CoRR”, abs/1406.1078.

Chung J., Giilcehre C., Cho K. and Bengio Y. (2014). Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling. ,,CoRR”, abs/1412.3555.

A Bi-LSTM network for NER in Polish 119

Data Community (2013). A Survey of Stochastic and Gagzetteer Based
Approaches for Named Entity Recognition — Part 2. http://www.
datacommunitydc.org/blog/2013/04/a-survey-of-stochastic-and-
gazetteer-based-approaches-for-named-entity-recognition-part-2.

Finkel J. R. and Manning C. D. (2009). Nested Named Entity Recognition. [in:]
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing:
Volume 1 (EMNLP’09), pp. 141-150. Association for Computational Linguistics.

Huang Z., Xu W. and Yu K. (2015). Bidirectional LSTM-CRF Models for Sequence
Tagging. ,,CoRR”, abs/1508.01991.

Jyoti Mahanta H. (2013). A Study on the Approaches of Developing a Named Entity
Recognition Tool. International Journal of Research in Engineering and Technology 02,
pp. 58-61.

Katiyar A. and Cardie C. (2018). Nested Named Entity Recognition Revisited. [in:]
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pp- 861-871. Association for Computational Linguistics.

Lample G., Ballesteros M., Subramanian S., Kawakami K. and Dyer C. (2016). Neural
Architectures for Named Entity Recognition. ,,CoRR”, abs/1603.01360.

Nadeau D. and Sekine S. (2007). A Survey of Named Entity Recognition and Classifica-
tion. ,Lingvisticae Investigationes”, (1), pp. 3-26.

Sang E. E T. K. and Meulder E D. (2003). Introduction to the CoNLL-2003 Shared
Task: Language-Independent Named Entity Recognition. ,,CoRR”, ¢s.CL/0306050.

Savary A., Chojnacka-Kuras M., Wesolek A., Skowroniska D. and Sliwiriski P (2012).
Anotacja jednostek nagewnicgych. [in:] Przepioérkowski A., Baniko M., Gorski R. L.
and Lewandowska-Tomaszczyk B. (eds.), Narodowy Korpus Jezyka Polskiego, pp. 129-
165. Wydawnictwo Naukowe PWN, Warsaw.

Sekine S., Sudo K. and Nobata C. (2002). Extended Named Entity Hierarchy. [in:]
Proceedings of the 3rd International Conference on Language Resources and Evaluation
(LREC 2002), pp. 1818-1824. European Language Resources Association.

Tai K. S., Socher R. and Manning C. D. (2015). Improved Semantic Representations
From Tree-Structured Long Short-Term Memory Networks. ,CoRR”, abs/1503.00075.

Yosef M. A., Bauer S., Hoffart J., Spaniol M. and Weikum G. (2012). HYENA:
Hierarchical Type Classification for Entity Names. [in:] Proceedings of COLING 2012:
Posters, pp. 1361-1370. The COLING 2012 Organizing Committee.

http://www.
datacommunitydc.org/blog/2013/04/a-survey-of-stochastic-and-
gazetteer-based-approaches-for-named- entity-recognition-part-2

Results of the PolEval 2018 Shared Task 3:
Language Models

Grzegorz Wojdyga (Institute of Computer Science, Polish Academy
of Sciences)

Abstract

PolEval is a national competition for Natural Language Processing researchers that
allows them to create and validate tools for Polish language. It is inspired by SemEval
competition and is organized similarly — the organizers provides data and evaluation
rules. In 2018 there were three tasks — Dependency Parsing, Named Entity Recogni-
tion and Language Models. This paper describes motivation, preparation and results
of the Language Models task.

1. Introduction

Natural Language Processing is one of the fastest-growing branch of Artificial Intelli-
gence. For many tasks in NLP there is no possibility to transfer solutions from one
natural language to another, so there is a necessity to create them independently for
Polish language. This was the most important motivation for Institute of Computer
Science to create PolEval. The goals of this competition are to provide free data in
Polish language, encourage Polish researchers to create tools for Polish language and
to make an opportunity of networking.

Last year’s tasks at PolEval concentrated on POS tagging and sentiment analysis. This
year in the second edition of PolEval we have decided to focus on Dependency Parsing,
Named Entity Recognition and Language Models. This paper describes the Language
Model task. There is a description of the task in Section 2. In Section 3 there is a
summary of previous Polish open-source language model and information about data
which was used to build them. In Section 4 there is a description of gathering and

122 Grzegorz Wojdyga

preparing data for this task. Section 5 contains information about evaluation that was
chosen. The methods that were submitted by participants are presented in Section 6.
Finally, Section 7 contains summary.

2. Task Description

The idea behind this task was very simple — encourage researchers to create the
modern language model for Polish. Language model should assign a probability to
each possible next word based on the previous words. In the latest years there is
a rapid growth of methods for creating language models. First language models
were purely statistical n-gram models, recently they are mostly done using recurrent
neural network e.g. Bengio et al. (2003) and Mikolov et al. (2010). In english there
is ongoing research on this topic. There are many corpuses for english, the most
famous is probably Penn Treebank (Marcus et al. 1993), but nowadays the most
popular one is “One billion word benchmark” created by Google (Chelba et al. 2013).
We have decided to follow Google approach, hence we provided huge corpus (half
billion words) in which the sentenced were shuffled and tokenized. Moreover we
have chosen that evaluation metric would be perplexity, which is the most popular
metric for Language Models. Participant had access to train data and later to test
data. They have measured the perplexity of their models on the test date following
the instructions and submit the result to organizers.

3. Previous work

Previous work in the field of language models is quite limited. Many companies have
developed language models for Polish but they haven’t shared their models due to
licenses policy. Academic research focused mostly on statistical methods like n-grams
— by Zidétko and Skurzok (2011), Wotk et al. (2017), Banasiak et al. (2017). Some
language models were developed for Automated Speech Recognition e.g. Ktosowski
(2017) and Rapp (2008).

4. Train and Test Data

In order to create the best language model the data should have been gathered in a
very large amount and from various sources. We could have use only the databases
with licenses that allowed to reuse for scientific purposes. We have decided to use

A Bi-LSTM network for NER in Polish 123

Table 1: Sources of the corpus

Source Sentence count Percentage
books 44348 0,17 %
NKJP 40756 0,15 %
Sejm 9461662 37,01 %
forums 6954771 27,20 %
Wikipedia 9066909 35,46 %
ALL 25568446 100,00 %

Polish Wikipedia®, Internet forums, Polish books — wolnelektury.pl?, National Corpus
of Polish (Przepiérkowski et al. 2012)2 and Polish Parliament Corpus (Ogrodniczuk
2012)*. The numbers of sentences and the percentage of all the content are presented
in Table 1.

We have extracted the sentences from them. Later we have tokenized them using
perl script similar to these provided by “One billion word benchmark” by Google®.
Then we left only those that had more than five tokens in it. Example of tokenized
sentences are presented in listing 13.1. Later we have divided the data for train and
test set so that ratio of data from different sources would be same both in train and
test set. The trainset was 90% of all data and testset was 10%. In the end we have
shuffled sentences.

W tym roku Adam jest studentem
Z tymi sprawami sobie poradzimy
W tej sytuacji wycofali swoje uwagi

Listing 13.1: Example of tokenized data

As for the dictionary we have followed Google’s “One billion word benchmark” ap-
proach. We have decided to create vocabulary from the words from trainset. Every
token that occurred three or more time was included to dictionary, every token that
occurred less than three time was excluded and replaced with <UNK> token. The
testset was transformed with trainset dictionary — any word in testset that doesn’t
appear in trainset dictionary is replaced with <UNK>.

"https://dumps.wikimedia.org/plwiki

Zhttps://wolnelektury.pl/api

Shttp://www.nkjp.pl

“http://clip.ipipan.waw.pl/PSC
*https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark

https://dumps.wikimedia.org/plwiki
https://wolnelektury.pl/api
http://www.nkjp.pl
http://clip.ipipan.waw.pl/PSC
https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark

124 Grzegorz Wojdyga

5. Evaluation Procedure

We have decided to use perplexity metric. Perplexity is a measure commonly used
to estimate the quality of a language model (see e.g. Google One Billion Word
Benchmark). Perplexity is the inverse probability of the test set, normalized by the
number of words.

The language model should estimate the possibility of occurrence for every word in
every sentence. The probability should be calculated for every word and the sentence
ending in the test set.

Perplexity can be calculated using the following equation:

=N log, (-~
PPL :exp(l_lTe‘l(xl)

where:

— N — number of samples in the test set,
— X — discrete random variable with possible values x1, ..., x,,,

— @(X) — probability function.

After transformation of the tokens in testset using trainset dictionary, participants
were asked to evaluate perplexity following standard procedure. The short example
was provided on webpage ©

Moreover, to verify if participants were using the same vocabulary we have asked
them to provide OOV rate for test set.

6. Submitted solutions
There were three participant who submitted 11 results.

The best language model was developed by Piotr Czapla and Marcin Kardas from n-
waves company. They used Universal language model fine-tuning for text classification
(Howard and Ruder 2018) with subword tokenization using SentencePiece (Kudo
2018). Universal Language Model for Fine-tuning [6] (ULMFiT) is one of the first NLP
methods for efficient inductive transfer learning. Unsupervised pretraining results in
improvements on many NLP tasks for English.

®http://poleval.pl/files/8515/2940/9834/Example0fPerplexity . pdf

http://poleval.pl/files/8515/2940/9834/ExampleOfPerplexity.pdf

A Bi-LSTM network for NER in Polish 125

Table 2: Results of Language Model task

Model Perplexity
ULMFiT-SP-PL 117.6705
AGHUJ 146,7082
PocolLM Order 6 208.6297
PocoLM Train + Semantic 211.6264

SRILM Interpolate Witten-Bell 216.3766

Authors adopted ULMFiT for Polish. Their model is based on the fastai’ implementa-
tion of ULMFiT, that was extended with subword tokenization provided by Sentence
Piece. The model is a 4 layered LSTM with multiple dropouts and trained using
Slanted Triangular Learning Rate. The language model is intended for transfer learn-
ing. Therefore, authors intentionally ignored any approaches that do not benefit
downstream tasks like neural cache or dynamic evaluation. The code® with model®
are available online.

Second best model was submitted by a team from Jagiellonian University. The system
utilizes Kneser-Ney 5-gram language model, where discounted n-gram probability
estimates are interpolated with lower order estimates. The system was trained using
SRILM toolkit °. The code!! with model'? are available online.

Third best solution was provided by Krzysztof Wolk, who also provided n-gram
statistical model. It was created using PocoLM toolkit 3. The author provided nine
different solutions, every with different method, in the table 2 there are only three
best. The model of solution is available online'*.

The results are presented in Table 2.

"http://nlp.fast.ai

®https://github.com/n-waves/poleval2018

“https://go.n-waves.com/poleval2018-modelvl
Ohttp://www.speech.sri.com/projects/srilm/
Unttps://github.com/kwrobel-nlp/1lm/
2http://wierzba.wzks.uj.edu.pl/~kwrobel/LM/1m_o5.gz
Bhttps://github.com/danpovey/pocolm
“https://drive.google.com/drive/folders/1Bvyoff_8D88pYVmoUjBq_-ocAggksp3F7usp=

sharing

http://nlp.fast.ai
https://github.com/n-waves/poleval2018
https://go.n-waves.com/poleval2018-modelv1
https://github.com/kwrobel-nlp/lm/
http://wierzba.wzks.uj.edu.pl/~kwrobel/LM/lm_o5.gz
https://drive.google.com/drive/folders/1Bvyoff_8D88pYVmoUjBq_-ocAggksp3F?usp=sharing
https://drive.google.com/drive/folders/1Bvyoff_8D88pYVmoUjBq_-ocAggksp3F?usp=sharing

126 Grzegorz Wojdyga

7. Summary

It is noticeable that most of the submissions were based on statistical methods. The
winning model was based on recurrent neural network architecture and it seems that
this approach is the most promising. Moreover it is possible that the language model
would work better for smaller vocabulary — the boundary of 3 might be too few for
such a large corpus.

The whole corpus and two best solutions are available online for everyone. We hope,
that the corpus that we have gathered will be benchmark in the future and more
neural-network-based models will occur.

Acknowledgments

The organizers would like to thank Dariusz Czerski from Institute of Computer Science,
Polish Academy of Sciences for providing data from Polish Internet forums.

References

Banasiak D., Mierzwa J. and Sterna A. (2017). Extended N-gram Model for Analysis of
Polish Texts. [in:] International Conference on Man-Machine Interactions, pp. 355-364.
Springer.

Bengio Y., Ducharme R., Vincent P and Jauvin C. (2003). A Neural Probabilistic
Language Model. ,Journal of machine learning research”, 3(Feb), pp. 1137-1155.

Chelba C., Mikolov T., Schuster M., Ge Q., Brants T., Koehn P and Robinson T. (2013).
One Billion Word Benchmark for Measuring Progress in Statistical Language Modeling.
,,arXiv:1312.3005”.

Howard J. and Ruder S. (2018). Universal Language Model Fine-tuning for Text
Classification. [in:] Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 328-339.

Klosowski P (2017). Polish Language Modelling for Speech Recognition Application.
[in:] Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA
2017), pp.313-318. IEEE.

A Bi-LSTM network for NER in Polish 127

Kudo T. (2018). Subword Regularization: Improving Neural Network Translation
Models with Multiple Subword Candidates. ,arXiv:1804.10959”.

Marcus M. B, Marcinkiewicz M. A. and Santorini B. (1993). Building a Large Annotated
Corpus of English: The Penn Treebank. ,,Computational linguistics”, 19(2), pp. 313—
330.

Mikolov T., Karafidt M., Burget L., Cernocky J. and Khudanpur S. (2010). Recur-
rent Neural Network Based Language Model. [in:] 11th Annual Conference of the
International Speech Communication Association.

Ogrodniczuk M. (2012). The Polish Sejm Corpus [in:] Proceedings of the 8th Interna-
tional Conference on Language Resources and Evaluation (LREC 2012), pp.2219-2223.

Przepiérkowski A., Banko M., Gérski R. L. and Lewandowska-Tomaszczyk B. (2012).
Narodowy Korpus Jezyka Polskiego [En.: National Corpus of Polish]. ,,Wydawnictwo
Naukowe PWN, Warsaw”.

Rapp B. (2008). N-gram Language Models for Polish Language. Basic Concepts and
Applications in Automatic Speech Recognition Systems. [in:] Computer Science and
Information Technology, 2008. IMCSIT 2008. International Multiconference on, pp. 321-
324. IEEE.

Wotk K., Wotk A. and Marasek K. (2017). Big Data Language Model of Contemporary
Polish. [in:] Computer Science and Information Systems (FedCSIS), 2017 Federated
Conference on, pp. 389-395. IEEE.

Ziotko B. and Skurzok D. (2011). N-grams Model for Polish. ,,Speech and language
technologies”, pp. 107-127.

Universal Language Model Fine-Tuning
with Subword Tokenization for Polish

Piotr Czapla (n-waves, Wroctaw), Jeremy Howard (fast.ai, University
of San Francisco), Marcin Kardas (n-waves, Wroclaw)

Abstract

Universal Language Model for Fine-tuning (ULMFiT; Howard and Ruder 2018) is
one of the first NLP methods for efficient inductive transfer learning. Unsupervised
pretraining results in improvements on many NLP tasks for English. In this paper, we
describe a new method that uses subword tokenization to adapt ULMFiT to languages
with high inflection. Our approach results in a new state-of-the-art for the Polish
language, taking first place in Task 3 of PolEval’18. After further training, our final
model outperformed the second best model by 35%. We have open-sourced our
pretrained models and code.!

1. Introduction

Language Modeling recently gained in importance as it is being used as a base for
transfer learning in multiple supervised tasks, obtaining impressive improvements
over state-of-the-art (Howard and Ruder 2018, Peters et al. 2018, Radford et al. 2018).
For example the error in text classification tasks was reduced by 18% — 24% (Howard
and Ruder 2018). More complex tasks like commonsense reasoning and question
answering were significantly improved by applying transfer learning from a Language
Model (Radford et al. 2018). Use of unsupervised learning and transfer learning has
the additional benefits of greatly reduced computing time and data requirements for
downstream supervised tasks. In some cases data requirements were reduced by 100
times (Howard and Ruder 2018).

"https://n-waves.com/poleval2018, http://nlp.fast.ai

https://n-waves.com/poleval2018
http://nlp.fast.ai

130 Piotr Czapla, Jeremy Howard, Marcin Kardas

Use of transfer learning is even more important for languages such as Polish, where
access to large supervised data sets is very limited. Most of the language models
published to date are n-gram models, that do not allow for transfer learning and are
very memory hungry.

2. Our Contribution

We adapt Universal Language Model Fine-Tuning (ULMFiT; Howard and Ruder 2018)
to handle Polish inflection with subword tokenization using SentencePiece (Kudo
2018). We trained multiple models on the PolEval 2018 LM dataset. Our best model
achieved a perplexity of 117.7 on the test set, resulting in first place in the competition
(second place scored a perplexity of 146.7). With further tuning after the competition
of the model’s hyperparameters, we lowered the perplexity to 95.0.

We hope to see the use of FastText (Bojanowski et al. 2017) as the most common way
of representing text in Polish replaced with our combination of SentencePiece and
ULMFiT.

3. Related Work

Language models traditionally were approximated with non-parametric models based
on counting statistics. This were recently replaced with deep neural network for
popular languages like English. However most of the literature devoted to the Polish
language considers n-gram models (Ziétko and Skurzok 2011, Wolk et al. 2017,
Smywinski-Pohl and Ziétko 2016, Pohl and Ziétko 2013). Brocki et al. (2012) showed
that a simple neural network (5 context words with 50 dimensional embeddings and
one hidden layer) greatly outperforms a 4-gram solution on a Polish corpus. Regardless
of performance, the n-gram models tend to be large (several dozens gigabytes for
5-gram; Wolk et al. 2017), making their use in web or mobile applications infeasible.
For comparison, our best performing model is around 150 MB without compression.
Moreover non-parametric models do not allow for transfer learning, which is the key
to good performance on many NLP tasks.

Natural language processing tasks show the best performance when transfer learning
is applied either from an LSTM language model (Howard and Ruder 2018, Peters
et al. 2018) or from self-attention language models (Radford et al. 2018).

The latter may hold the most promise as has been shown to work well on advanced
NLP tasks like question answering, however, it is hard to train and requires extensive

Universal Language Model Fine-Tuning with Subword Tokenization for Polish 131

computing power and time (Al-Rfou et al. 2018). Therefore, we decided to first adopt
an LSTM based model for Polish.

LSTMs are the most widely used RNNs. Recent state of the art performance of lan-
guage models can be tracked to Merity et al. (2018), who propose a way to efficiently
use dropout in LSTM networks as well as other regularization and performance
techniques like averaged stochastic gradient descent, or randomized-length backprop-
agation through time (BPTT). This work was later extended to transfer learning and
classification by Howard and Ruder (2018). Transfer learning in language modeling
was shown to benefit from slanted triangular learning rates and other techniques
described by Smith (2017), originally used to quickly train computer vision models
with minimal resources.

LSTM based language models can be improved with use of adaptive methods during
inference: neural cache (Grave et al. 2016) and dynamic evaluation (Krause et al.
2017). Both methods depend on observing sequence elements after they are predicted
in order to perform adaptation. As our Polish language model is intended for transfer
learning and not just the language modeling, we intentionally ignored any approaches
that do not benefit downstream tasks.

A few papers investigate using some more sophisticated activation functions for the
output layer, e.g., mixture of softmaxes (Yang et al. 2017) and Hebbian softmax (Rae
et al. 2018). The use of mixture of softmaxes has been criticized for large computing
and memory requirements. Whilst Hebbian softmax is a new work that holds a
promise for a better language model for downstream tasks, it requires significant
computing power. Their models where trained for 6 days with 8 P100s, while ULMFiT
can be trained in around 6 to 10 hours on one P100.

ULMFiT’s approach (Howard and Ruder 2018) contributes a number of training tactics
that allow for inexpensive training of language models. It introduced a successful
approach to transfer learning and fine-tuning for NLP tasks. We selected it as our
base for practical reasons such as small memory footprint, quick training time and
the direct applicability to other downstream tasks like sentiment analysis.

A popular approach to transfer learning explored earlier in NLP was word embeddings.
They appear in the Polish NLP space in form of word2vec (Rogalski and Szczepaniak
2016, Mykowiecka et al. 2017) and FastText (Bojanowski et al. 2017). However this
approach only pretrains the first layer of a model, which greatly limits its effectiveness.

All of the word embeddings before FastText were hindered by the inflection of the
Polish language, which renders most approaches to finding embeddings for full words
incapable of learning useful features. The most successful attempt was FastText, which
uses pieces of words.

132 Piotr Czapla, Jeremy Howard, Marcin Kardas

Another approach to address inflections in Polish is to use byte pair encoding (Sennrich
et al. 2016), character level language models (Peters et al. 2018) or unigram subword
tokenization (Kudo 2018). We used the unigram algorithm as its representation of
Polish words most closely fitted the training pipeline of ULMFiT, and because it has
shown state of the art performance in downstream tasks such as machine translation.

4. Model

4.1. Dataset

Our language model was trained only on PolEval 2018 LM data?. A summary of the
datasets is presented in Table 1.

Table 1: Summary of PolEval 2018 LM datasets. The tokens denoting beginning and end of
sentence are not included

Dataset Sentences Tokens OOV rate
train 23.0M 451.8 M 0.73%
train (dedup.) 21.3M 4239 M 0.78%
test 2.6 M 50.2M 0.91%
test (dedup.) 2.4 M 48.6 M 0.94%

The vocabulary is created from all tokens appearing at least 3 times in the training
data, yielding a vocabulary of 1.38 M tokens.

4.2. Subword Tokenization

Similarly as in the requirements of the competition, ULMFiT represents tokens using a
fixed-size vocabulary. Tokens not in the vocabulary are replaced by the special <unk>
token. However, by mapping tokens to integer identifiers we get rid of information
regarding words structure. As a result, a language model operating on full words
needs much more data to learn rules of highly inflected languages like Polish.

One of solutions to this problem is to use a character level model (Krause et al. 2017, Al-
Rfou et al. 2018). Compared to word-based models, character level models are larger
and require higher computational costs to achieve the same performance (Bojanowski
et al. 2015). To gain the advantages of both approaches we trained a model working

Zhttps://n-waves.com/poleval2018/competition — the url to the competition will most likely
change in 2019 so here is an up to date redirection.

https://n-waves.com/poleval2018/competition

Universal Language Model Fine-Tuning with Subword Tokenization for Polish 133

P(-|<s>) P(-|<s>_Bez) P(-|<s>_Bezbar)

T T T T T T
(TITT] [ITTT] [TTTT] (ITTT] CITTTT] (TITT]
T T T T T T
LSTM; —— LSTM; —— LSTM3 —— LSTM; —— LSTM3; —— | LSTM,3
T T T T T T
T T T T T T
T T T T T T
T T T T T T
sty —— LSTM, —— LSTM, —— LSTM, —— LSTM, —— @ LSTM,

T T T T T T
CITTT] (T LT (LI LT CITTT]
T T T T T T

<s> _Bez bar wn e —zielone

Figure 1: An ULMFiT architecture with 4 recurrent layers

on parts of words. The subword vocabulary is created by training a SentencePiece®

tokenization model. We use a unigram segmentation algorithm (Kudo 2018). Table 2
shows an example of subword tokenization of a sentence for various vocabulary sizes.
An important property of SentencePiece tokenization, necessary for us to obtain a valid
word-based language model, is its reversibility. We do not use subword regularization
as we decided that the available training dataset is large enough to avoid overfitting.

We now present a formal justification of our approach. For a multiset of sentences
S={sy,...,sytand LM q: W* — [0, 1], the empirical perplexity per token is given by
d ~
ppls () & 2HGD/Evepsl) |

where

H(p,q)= —]%Zlgq(S)

seS

*https://github.com/google/sentencepiece

https://github.com/google/sentencepiece

134 Piotr Czapla, Jeremy Howard, Marcin Kardas

Table 2: An example split of sentence “Bezbarwne zielone idee wsciekle $pia.” (Colorless
green ideas sleep furiously) into subword tokens using SentencePiece models differing by
vocabulary sizes. Ratio denotes an average number of subword tokens used to encode an input
token. The bottom part of the table was obtained by applying a lowercasing preprocessing
step (see Section 4.3).

|V| Ratio

4k 190 _B e z bar w ne _zielon e _i de e _w §ci ek le _— § pi g —_.
8k 1.67 _Bez bar w ne _zielon e _ide e _w §ci ek le — § pi g —.
25k 1.42 _Bez bar wn e _zielone _ide e _w &cie kle _8pi a _.
50k 1.34 _Bez bar wne _zielone _idee _w Scie kle _$pi 3 —_.
100k 1.29 _Bez bar wne _zielone _idee _w &cie kle _§pig —.

4k 2.04 <up> _bez bar w ne — zielon e —i de e _w Sci ek le — § pi g —.
8k 1.83 <up> _bez bar w ne _zielone _ide e _w §ci ek le _ § pi g _.
25k 1.61 <up> _bezbarwn e _zielone _ide e _w S§cie kle _Spi g —_.
50k 1.53 <up> _bezbarwn e _zielone _idee _w Scie kle _Spi g —.
100k 1.49 <up> _bezbarwne _zielone _idee _w Scie kle _$§pig _.

is an empirical cross-entropy and

1
Eynp (sh) = D lslw

seS

is the average sentence length (in tokens).

Let F: W* 25 V* be a one-to-one mapping from sentences/sequences over tokens
in W into sequences over tokens in V. Having a LM gy : V* — [0, 1] we can create
alM qy: W* — [0,1] with gy (s) = qy(F(s)). F being injective guarantees that
d
7Y > wew qw(s) < 1. To make qyy a valid distribution we could normalize it by Z
(computing of which could be infeasible) or simply assume that gy, (#) =1 —Z for
some additional symbol # ¢ W (and 0 for any other sequence containing #). With
def
(Foqy)(s) = qv(F(s)) we have

H(p,Foqy)
Eq-j (Islw)
_ H(,Foqy) Eep (IFGS)ly)
T B (IFOly) Egup (slw))
By (IF(s)ly)
Eq-j (Islw)

Ig (ppls (QW)) =lg (ppls (Fo qv)) =

=1g(pplr(s) (av)) -

or equivalently

ppls (qw) = (PPly(s) (qy) B (POl Eempllslw) (14.1)

Universal Language Model Fine-Tuning with Subword Tokenization for Polish 135

In our case, W consists of 3 control tokens (<unk>, <s> and </s>) and 1 378 027
tokens* occurring 3 or more times in the training data. V is constructed by unigram
model (Kudo 2018) using SentencePiece subword tokenizer and consists of 4 control
tokens (additional <pad> token) and 24 996 subword tokens. For any sentence s € W*
we use the most probable tokenization as F(s). To get even better results we could
sum over all possible splits of s. We believe, however, that the normalization factor Z
can be neglected as model should learn to ignore non-existent words or alternative
tokenizations.

4.3. Universal Language Model Fine-tuning

Our model is based on the fast.ai® implementation of ULMFiT. Table 3 gives details of
our final submission as well as the best model trained after the competition.

Table 3: Details of our submission and the best model trained after competition

PolEval submission tuned model
vocabulary size 50K 25K
RNN type LSTM
recurrent layers 4
embeddings dimension 400
hidden state dimension 1150
training time 18 epochs 30 epochs
data set used for training ~25% 100%
batch size 192 128
sampled softmax 15 K samples no
text transforms none
perplexity 117.8 95.0

4.4. Data Preprocessing

Our preprocessing pipeline for the training data starts with counting occurrences of
word tokens and extracting a dictionary consisting of words with at least 3 occurrences.
The tokenized file is then deduplicated.

During development we experimented with an optional step of encoding words with
an initial letter being the only capital letter. Such words are preceded with a special

“Even though not all tokens in PolEval datasets are words (e.g., there are tokens consisting of
punctuation marks) and some tokens produced by SentencePiece are valid words, for simplicity we call
the former word tokens and the later subword tokens.

Shttp://nlp.fast.ai/

http://nlp.fast.ai/

136 Piotr Czapla, Jeremy Howard, Marcin Kardas

<up> token and the initial letter is lower-cased (see Table 2 for an example). However,
the experiments showed that there is no significant difference.

After the deduplication (and optional lower-casing) the full dataset is used to train
a SentencePiece unigram model. The dictionary extracted in the first step is used
to remove rare (i.e., out-of-vocabulary) word tokens. The resulting sentences are
encoded by the SentencePiece model. Due to large size of the training dataset we do
not use subword regularization — each sentence is tokenized only once with the best
encoding. The final dataset is randomly shuffled and split into a validation dataset
(around 10 million subword tokens) and a training dataset.

For the test dataset we optionally perform a lower-casing step, remove the out-of-
vocabulary words and encode word tokens into subword tokens with SentencePiece
model. The deduplication step ensures that training and validation sets are disjoint.
However, because the test and the training datasets share some sentences (around
0.23 M / 9.29% test sentences are present in the training dataset), the cross validation
perplexity was always higher than the test one.

5. Experiments

We run multiple experiments on around 10 M subword tokens of data to gain an
intuition on how to tune ULMFiT hyperparameters for best performance on the Polish
language. Most promising solutions were trained further on the whole training set,
and the best (based on validation perplexity) was selected. In this Section we present
our findings regarding tuning various hyperparameters of the ULMFiT model.

5.1. Vocabulary Size

Our experiments showed that out of all tested hyperparameters, the vocabulary
size has the greatest impact on model performance on Polish language. Unlike the
English ULMFiT on full words, our vocabulary size influences how the subword tokens
are formed. For a large enough vocabulary two words with the same lemma are
represented as two different ids, and the similarity information is lost. The smaller
the vocabulary, the closer we get to character level models.

5.2. Number of Recurrent Layers

We tested our models with 3, 4 and 5 recurrent layers. Each additional layer noticeably
increases memory usage of model and time necessary for a single training epoch. On

Universal Language Model Fine-Tuning with Subword Tokenization for Polish 137

a small training dataset the 5-layer models performed significantly worse. We do not
know whether longer training, more data or subword regularization could improve
the performance relative to smaller models. The performance of 3-layer and 4-layer
models were almost identical on a small dataset, but training on the full dataset
proved that the latter is more capable, and achieves lower validation perplexity.

5.3. Text Preprocessing

In some experiments we applied lower-casing of the initial letter of each word. To
make the transform reversible, such words were preceded by <up> control token
(see Table 2). For most of the tested vocabulary sizes and number of layers there
was no noticeable difference in perplexity, with an exception of 100 K tokens, where
lower-casing resulted in degraded performance.

5.4. Results

I 3 layers I 4 layers [5 layers
700 - |

600 - |

500 - |

Perplexity on small dataset

400 | iy

300

4K 8K 12K 16K 20K 25K 50K 100K
Vocabulary size

Figure 2: Plot showing an impact of number of recurrent layers and vocabulary size on
validation perplexity. Models trained for 12 epochs on a small dataset consisting of around 10
M subword tokens. Models with vocabulary of size 25K and more were trained with sampled
softmax (with 15K samples).

138 Piotr Czapla, Jeremy Howard, Marcin Kardas

6. Final Remarks

We showed that a subword tokenization can be used to achieve a high-performing
language model for Polish, a morphologically rich language. The presented model
achieves state-of-the-art perplexity. However, we did not use the main advantage of
ULMFIT, i.e., its ability for transfer learning. The natural next steps are to implement
custom heads for common NLP tasks (named entity recognition, sentiment analysis)
with a pretrained ULMFiT model as a backbone.

References

Al-Rfou R., Choe D., Constant N., Guo M. and Jones L. (2018). Character-level
Language Modeling with Deeper Self-Attention. ,arXiv:1808.04444".

Bojanowski P, Joulin A. and Mikolov T. (2015). Alternative Structures for Character-
Level RNNS. ,,CoRR”, abs/1511.06303.

Bojanowski B, Grave E., Joulin A. and Mikolov T. (2017). Enriching Word Vectors with
Subword Information. , Transactions of the Association for Computational Linguistics”,
5, pp. 135-146.

Brocki L., Marasek K. and Korzinek D. (2012). Connectionist Language Model for
Polish. [in:] Intelligent Tools for Building a Scientific Information Platform, pp. 243-250.
Springer.

Grave E., Joulin A. and Usunier N. (2016). Improving Neural Language Models with a
Continuous Cache. ,arXiv:1612.04426”.

Howard J. and Ruder S. (2018). Universal Language Model Fine-tuning for Text
Classification. [in:] Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.328-339. Association for
Computational Linguistics.

Krause B., Kahembwe E., Murray I. and Renals S. (2017). Dynamic Evaluation of
Neural Sequence Models. ,arXiv:1709.07432".

Kudo T. (2018). Subword Regularization: Improving Neural Network Translation
models with multiple subword candidates. [in:] Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 66-75.
Association for Computational Linguistics.

Universal Language Model Fine-Tuning with Subword Tokenization for Polish 139

Merity S., Keskar N. S. and Socher R. (2018). Regularizing and Optimizing LSTM
Language Models. [in:] International Conference on Learning Representations.

Mykowiecka A., Marciniak M. and Rychlik P (2017). Testing Word Embeddings for
Polish. ,,Cognitive Studies”, (17).

Peters M. E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K. and Zettlemoyer L.
(2018). Deep Contextualized Word Representations. [in:] Proceedings of NAACL.

Pohl A. and Zidtko B. (2013). Using Part of Speech N-grams for Improving Automatic
Speech Recognition of Polish. [in:] Perner P (ed.), Machine Learning and Data Mining
in Pattern Recognition, pp. 492-504, Berlin, Heidelberg. Springer Berlin Heidelberg.

Radford A., Narasimhan K., Salimans T. and Sutskever I. (2018). Improving Language
Understanding by Generative Pre-training.

Rae J. W, Dyer C., Dayan P and Lillicrap T. P (2018). Fast Parametric Learning with
Activation Memorization. ,,CoRR”, abs/1803.10049.

Rogalski M. and Szczepaniak P S. (2016). Word Embeddings for the Polish Language.
[in:] International Conference on Artificial Intelligence and Soft Computing, pp. 126-135.
Springer.

Sennrich R., Haddow B. and Birch A. (2016). Neural Machine Translation of Rare
Words with Subword Units. [in:] Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (ACL 2016), Volume 1: Long Papers.

Smith L. N. (2017). Cyclical Learning Rates for Training Neural Networks. [in:] 2017
IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464-472. IEEE.

Smywinski-Pohl A. and Ziétko B. (2016). Application of Morphosyntactic and Class-
based Language Models in Automatic Speech Recognition of Polish. ,International
Journal on Artificial Intelligence Tools”, 25(02).

Wotk K., Wotk A. and Marasek K. (2017). Big Data Language Model of Contemporary
Polish. [in:] Federated Conference on Computer Science and Information Systems
(FedCSIS 2017), pp. 389-395. IEEE.

Yang Z., Dai Z., Salakhutdinov R. and Cohen W. W. (2017). Breaking the Softmax
Bottleneck: A High-rank RNN Language Model. ,,arXiv:1711.03953”.

Ziotko B. and Skurzok D. (2011). N-grams Model for Polish. ,Speech and Language
Technologies”, pp. 107-127.

Survey on Statistical and Semantic Language
Modelling Based on PolEval

Krzysztof Wotk (Polish-Japanese Academy of Information Technology)

Abstract

Based on PolEval 2018 provided training data we provide a set of 6-gram language
models of contemporary Polish which are based on over 20 million sentences in
Polish. We do pre-processing and evaluation similarly, as in Google One Billion Word
Benchmark. We survey most common statistical language modelling toolkits and
implement semantic language models with two different approaches. We train the
language model, evaluate how toolkits perform for the Polish language and finally
present advances of perplexity (PPL) values, through the utilization of our models.

Keywords

language modelling, perplexity, Polish language model

1. Introduction

There are a large number of language processing tasks available that make web-scale
corpora attractive and needed due in most, to the vast amount of information which
exists in different languages. Language modelling is of great significance, where
web-scale models for language have demonstrated their ability to enhance automated
speech recognition performance and machine translation quality (Brants et al. 2007,
Guthrie and Hepple 2010, Chelba and Schalkwyk 2013). There are also other NLP
tasks that depend greatly on language modelling e.g. language quantification (Lenko-
Szymanska 2016).

In this article we focus on statistical toolkits and semantic language models. A statis-
tical language model is a probability distribution over sequences of words. Given a

142 Krzysztof Wotk

set of sentences in Polish in a random order, each with original punctuation. We did
this work within the PolEval 2018 task. The goal of the task was to create a language
model for Polish. Participants were allowed to use any approach to creating the model.
But the data was limited.

As the training data set, the PolEval team has prepared a corpus containing over 20
million sentences in Polish. The corpus consists of a single plain text. The order of
the sentences was randomized, and their sources were revealed together with the test
data. The punctuation and spelling has been left untouched from the original sources.
The participants were provided the segmented training corpus. All the tokens (words
and punctuation marks) were separated with space.

Data pre-processing was performed similarly, as in Google One Billion Word Bench-
mark. Words were assumed to be the basic units of the language model. Punctuation
marks are treated as words and they were a part of language model. A vocabulary was
extracted from the training set. Every word and punctuation mark that has occurred
three or more times in the training set was included in the vocabulary. Additionally,
the vocabulary included sentence boundary markers (“~”) and the token which was
used to map Out Of Vocabulary (OOV) words <unk>. OOV words are tokens that are
present in the training or test set, but not included in the vocabulary.

2. Differences between Polish and English Languages

The main goal of this survey was to check how mainstream language modelling toolkits
perform for Polish language without any special adaptation even that those tools were
invented for English. Polish ang English differ greatly. In general, Polish and English
differ in syntax and grammar. English is a positional language, which means that
the syntactic order (the order of words in a sentence) plays a very important role,
particularly due to the limited inflection of words (e.g., lack of declension endings).
Sometimes, the position of a word in a sentence is the only indicator of the sentence’s
meaning. In a Polish sentence, a thought can be expressed using several different
word orderings, which is not possible in English. For example, the sentence “I bought
myself a new car.” can be written in Polish as “Kupitem sobie nowy samochdéd.”, or
“Nowy samochdd sobie kupitem.”, or “Sobie kupitem nowy samochdéd.”, or “Samochdd
nowy sobie kupitem.”. The only exception is when the subject and the object are in
the same clause and the context is the only indication which is the object and which
is subject. For example, “Mysz lize kos¢. (A mouse is licking a bone.)” and “Kos$¢ lize
mysz. (A bone is licking a mouse).”.

Differences in potential sentence word order make the translation process more
complex, especially when using a phrase-model with no additional lexical information

Universal Language Model Fine-Tuning with Subword Tokenization for Polish 143

(Swan 2003). In addition, in Polish it is not necessary to use the operator, because the
Polish form of a verb always contains information about the subject of a sentence. For
example, the sentence “On jutro jedzie na wakacje.” is equivalent to the Polish ‘Jutro
jedzie na wakacje.” and would be translated as “He is going on vacation tomorrow.”
(Choong and Power 2003).

[P}

In the Polish language, the plural formation is not made by adding the letter “s” as a
suffix to a word, but rather each word has its own plural variant (e.g., “pies — psy”,
“artysta — artysci”, etc.). Additionally, prefixes before nouns like “a”, “an”, “the”, do
not exist in Polish (e.g., “a cat — kot”, “an apple — jabtko”, etc.) (Swan 2003).

The Polish language has only three tenses (present, past, and future). However, it
must be noted that the only indication whether an action has ended is an aspect. For
example, “Robitem pranie.” Would be translated as “I have been doing laundry”, but
“Zrobitem pranie.” as “I have done laundry”, or “ptaka¢ — wyplaka¢” as “cry — cry
out” (Swan 2003).

The gender of a noun in English does not have any effect on the form of a verb, but it
does in Polish. For example, “Zrobit to. — He has done it.”, “Zrobita to. — She has

done it.”, “lekarz/lekarka — doctor”, “uczen/uczennica = student”, etc. (Cao et al.
2005).

Because of this complexity, progress in the development of SMT systems for West-Slavic
languages has been substantially slower than for other languages.

3. Toolkits Used in the Research

For language model training we firstly used the most common SRILM toolkit (Stolcke
2002). The fundamental challenge that language models handle is sparse data. It
is possible that some possible translations were not present in the training data but
occur in real life. There are some methods in SRILM, such as add-one smoothing,
deleted estimation, and Good-Turing smoothing, that cope with this problem (Koehn
2010).

Interpolation and back-off are other methods of solving the sparse data problem in
n-gram LMs. Interpolation is defined as a combination of various n-gram models with
different orders. Back-off is responsible for choosing the highest-order n-gram model
for predicted words from its history. It can also restore lower-order n-gram models
that have shorter histories. There are many methods that determine the back-off
costs and adapt n-gram models. The most popular method is known as KneserNey
smoothing. It analyses the diversity of predicted words and takes their histories into

144 Krzysztof Wotk

account (Koehn et al. 2007). We used this smoothing method and trained 6-gram
language models.

Other used tool was KenLM that estimates, filters, and queries language models.
Estimation is fast and scalable due to streaming algorithms. The KenLM is a library
that implements two data structures for efficient language model queries, reducing
both time and memory costs. The probing data structure uses linear probing hash
tables and is designed for speed. Compared with the widely used SRILM, the KenLM
probing model is 2.4 times as fast while using 57

citep of the memory. The trie data structure is a trie with bit-level packing, sorted
records, interpolation search, and optional quantization aimed at lower memory
consumption. Trie simultaneously uses less memory than the smallest lossless baseline
and less CPU than the fastest baseline. The toolkit code is open-source, thread-safe,
and integrated into the Moses, cdec, and Joshua translation systems.

Lastly, we put our attention on PocoLM toolkit. The new PocoLM toolkit is designed
to provide better results in modelling word sequences for use in speech recognition
than standard toolkits like SRILM and KenLM and offers a good training time.

Currently, most popular language modelling tools first have to estimate partial lan-
guage models separately in order to conduct interpolation and finally interpolate
those estimates. The PocoLM authors state that this does not seem to be the optimal
solution because it interacts with proper backoff propagation. In PocoLM, the data
sources are interpolated before the language model estimation at the level of data
counts.

The PocoLM authors also try to improve the most popular Stolcke entropy pruning
method. PocoLM method operates on the same principle as Stolcke pruning but
manages to be more optimal because, when it removes a probability from the LM, it
assigns the removed data to the backed-off propagation and updates its probabilities
accordingly.

4. Semantically-enhanced Language Models

Within the research we also implemented tool that extends the monolingual corpora
with semantical information. We used two methods for this task. Firstly, the artificially
generated monolingual corpus was obtained using statistical models, which are based
purely on how frequently “things” happen, and not on what they really mean. This
means that they do not really understand what was augmented. In the first method
the data was additionally extended with semantic information from the plWordNet, so

Universal Language Model Fine-Tuning with Subword Tokenization for Polish 145

as to improve the quality and scope of the data text domain. The word relationships
were integrated into generated data using the p]lWordNet database.

The way in which WordNet was used to obtain a probability estimator was shown by
Cao et al. (2005). In particular, we wanted to obtain P (w;|w), where w; and w are
assumed to have a relationship in WordNet. The formula is as follows:

c (Wi’ W|W) L)
S, c (o, 1)

where W is a window size and ¢ (w;, w|W, L) is the count of w; and w appearing
together within W-window. This can be obtained simply by counting each within a
certain corpus. In order to smooth the model, we applied interpolated Kneser-Ney
(Chen and Goodman 1999) smoothing strategies.

P (wilw) =

The following relationships were considered: synonym, hypernym, hyponym, and
hierarchical distance between words.

Another common approach to semantic analysis that is also used within this research
is latent semantic analysis (LSA). LSA has already been shown to be very helpful in
automatic speech recognition (Bellegarda 2000) and many other applications, which
was the reason for incorporating it within the scope of this research. The high-level
idea of LSA is to convert words into concept representations and to assume that if the
occurrence of word patterns in documents is similar, then the words are also similar.
The mathematical model can be defined as follows.

In order to build the LSA model, a co-occurrence matrix W will first be built, where
w;; is a weighted count of word w; and document d;.

wij = G;iL;;Cy;
where C;; is the count of w; in document d;; L;; is local weight and G; is global weight.

Usually, L;; and G; can use TF/IDE.

Then, singular value decomposition (SVD) analysis will be applied to W, as

w=usvT

where W is a M « N matrix (M is vocabulary size, N is document size); U is M %R, S
isR*R, and V is a R+ N matrix. R is usually a predefined dimension number between
100 and 500.

After that, each word w; can be denoted as a new vector U; = u;. Based on this new
vector, the distance between two words is defined as:

146 Krzysztof Wotk

w2
m
K (Ui, U]-) =—1"
|u; | ¢ [|
Therefore, clustering can be performed to organize words into K clusters,
Cy,Cy,...,Ck.

If Hy_; is the history for word W,, then it is possible to obtain the probability of W,
given H,_; using the following formula:

P(quHq—l):P(quwq—liwq—b"'Wq—n+1’dq1)
=P (quWq—l’ Wo—a, .. Wq—n+1) (qudch |)

where P(Wq|Wq_1,Wq_2, . ..Wq_n+1) is the N-gram model; P (Wq|dq1|) is the LSA
model.

Additionally,
p(Wild,) =P (U,lV,) = KU Ve) Vs
qldq, Yz vk (U, Y,,) |Uq%|*|vl/f
fud

where Z(U, V) is the normalized factor.

It is possible to also apply word smoothing to the model-based K-Clustering as follows:

K
P(qudql) = ZP(Wq|Ck)PCk|dq1
k=1

where P (WqICk)PCkldq1 can be computed using the distance measurement given
above by a normalized factor.

In this way, the N-gram and LSA model are combined into a single language model
and can be used for word comparison and text generation. The Python code for such
LSA analysis was implemented in Thomo’s (2009) research.

5. Evaluation and Results

The evaluation was done using the perplexity value (PPL) in accordance with the
Google One Billion Word Benchmark. The test set was provided by the PolEval 2018
organizers. The model with the lowest perplexity has the best quality.

Universal Language Model Fine-Tuning with Subword Tokenization for Polish 147

Perplexity is a measure commonly used to estimate the quality of a language model
it is the inverse probability of the test set, normalized by the number of words. The
language model should estimate the possibility of occurrence for every word in every
sentence. The probability should be calculated for every word and the sentence ending
in the test set.

Perplexity can be calculated using below equations:

Zé\lzlloge(ﬁ)

N

exp

where

— N — number of samples in the test set,
— X — discrete random variable with possible values x{, x, ..., X,
— ¢(X) — probability function.

For instance, for the bigram language model perplexity equals:

N

W) =[]] 1

1 P (wilwi—1)

where

— N — number of words in the testset + number of sentence endings,

— W —the testset {w_1,w 2, ..., w N},

— P(w;|w;_;) is the conditional probability of word w; that occurs after word
Wi_1.

The Table 1 provides results of the experiments.

6. Discussion and Conclusions

Summing up, we successfully released n-gram counts and language models built
using plain textual data as well as semantically augmented corpora which overcome
limitations of other smaller, publicly available resources. As anticipated the state-of-
the-art language modelling PocoLM toolkit for English also outperforms other tools
for Polish. This was proven by the improvements in perplexity value. The usage of

148 Krzysztof Wotk

Table 1: Results of the experiments

Toolkit Settings Perplexity
KenLM Order 6 259
PocoLM Order 6 208
PocoLM Order 6, semantic 211
SRILM Order 6, float counts 219
SRILM Order 6, Kneser-ney, Semantic 1336
SRILM Order 6, Kneser-ney, Semantic and train 454
SRILM Order 6, Kneser-ney 289
SRILM Order 6, Kneser-ney, Interpolated 273
SRILM Order 6, Witten-bell, Interpolated 216

semantical models reduced the OOV problem but did make any positive impact on
the PPL, this is probably due to increased data sparsity.

As far as language models are concerned, we will try interpolating the results of
continuous space word representations (eg. LSTM RNN) models and log bilinear
language models with our n-gram models (Mikolov et al. 2013). As described in
literature (Sundermeyer et al. 2012, Xiong et al. 2016) it should allow us to reduce
the PPL and WER even more, while retaining ARPA format compatibility. To be more
precise, using such method with feature vectors, from tools such as word2vec, GloVe
etc. should allow us to get as much as 5% reduction in WER.

In addition, we plan to deal with OOV words problem by modelling only the most
popular words. The less popular ones are going to be replaced by some kind of lexical
unit smaller than a single word. To be more precise, we are going to uses syllables
and stemming to obtain sub word units. What is more, in order to maintain as much
lexical information as possible we will use “++ — -” as division mark. This will allow
us to keep information about that how the units should be merged to build a word
(Sennrich et al. 2015).

We are also going to try the well-established, for English language, algorithm called
BPE. The BPE segments rare words into their more commonly appearing sub-words.
The BPE achieves its goal by adapting byte pair encoding (BPE; Gage 1994), a compres-
sion algorithm, to the task of word segmentation. BPE allows for the representation
of an open vocabulary through a fixed-size vocabulary of variable-length character
sequences, making it a very suitable word segmentation strategy for neural network
models.

Finally, the data can be augmented with Part-of-Speech tags (POS) or/and grammatical
groups. We plan to use this information not only for training of factored language

Universal Language Model Fine-Tuning with Subword Tokenization for Polish 149

models (Bilmes and Kirchhoff 2003) but also incorporate it in stemming phase. In
fact, this will allow us to more correctly distinguish sub-word units (like word core,
suffixes and prefixes). Such additional tags will be marked by additional tag “@@” in
order to distinguish them from sub-word divider.

References

Bellegarda J. (2000). Data-driven Semantic Language Modeling. ,Institute for
Mathematics and Its Applications Workshop”.

Bilmes J. A. and Kirchhoff K. (2003). Factored Language Models and Generalized
Parallel Backoff. ,Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language Technology”.

Brants T, Popat A. C., Xu B, Och E J. and Dean J. (2007). Large Language Models in
Machine Translation. ,Proceedings of the Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning”.

Cao G., Nie J. and Bai J. (2005). Integrating Term Relationships into Language Models.
,Proceedings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval”.

Chelba C. and Schalkwyk J. (2013). Empirical Exploration of Language Modeling for
the google.com Query Stream as Applied to Mobile Voice Search. ,Mobile Speechand
Advanced Natural Language Solution”.

Chen S. and Goodman J. (1999). An Empirical Study of Smoothing Techniques for
Language Modeling. ,Computer Speech & Language”.

Choong C. and Power M. S. (2003). The Difference between Written and Spoken English.
,Assignment Unit, 1”.

Gage P (1994). A New Algorithm for Data Compression. ,,The C Users Journal”.

Guthrie D. and Hepple M. (2010). Storing the Web in Memory: Space-efficient Language
Models with Constant Time Retrieval. ,Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing”.

Koehn P (2010). Moses, Statistical Machine Translation System. User Manual and Code
Guide. ,Monograph”.

150 Krzysztof Woltk

Koehn P, Hoang H., Birch A., Callison-Burch C., Federico M., Bertoldi N. and Dyer C.
(2007). Moses: Open Source Toolkit for Statistical Machine Translation. ,Proceedings
of the 45th Annual Meeting of the ACL”.

Lenko-Szymanska A. (2016). A Corpus-based Analysis of the Development of Phraseo-
logical Competence in EFL Learners Using the Collgram Profile. ,Paper presented at the
7th Conference of the Formulaic Language Research Network (FLaRN)”.

Mikolov T., Sutskever I., Chen K., Corrado G. S. and Dean J. (2013). Distributed
Representations of Words and Phrases and Their Compositionality. ,,Advances in Neural
Information Processing Systems”.

Sennrich R., Haddow B. and Birch A. (2015). Neural Machine Translation of Rare
Words with Subword Units. ,,arXiv:1508.07909”.

Stolcke A. (2002). SRILM — an Extensible Language Modeling Toolkit. ,Interspeech
Conference”.

Sundermeyer M., Schliiter R. and Ney H. (2012). LSTM Neural Networks for Language
Modeling. ,13th Annual Conference of the International Speech Communication
Association”.

Swan O. E. (2003). Polish Grammar in a Nutshell. ,University of Pittsburgh”.

Thomo A. (2009). Latent Semantic Analysis (LSA) Tutorial. ,http://webhome.cs.
uvic.ca/~thomo/svd.pdf”.

Xiong W., Droppo J., Huang X., Seide E, Seltzer M., Stolcke A., Yu D. and Zweig
G. (2016). Achieving Human Parity in Conversational Speech Recognition.
,arXiv:1610.05256”.

http://webhome.cs.uvic.ca/~thomo/svd.pdf
http://webhome.cs.uvic.ca/~thomo/svd.pdf

